Ming Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2814401/ming-yang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 5,641 41 175 h-index g-index citations papers 6,687 5.69 185 7.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
175	Flexible Sb0.405Te0.595 photodetectors with broadband spectral response up to 4.5 $\bar{\mu}$ m. <i>Acta Materialia</i> , 2022 , 226, 117631	8.4	O
174	Structure dependent and strain tunable magnetic ordering in ultrathin chromium telluride. <i>Journal of Alloys and Compounds</i> , 2022 , 893, 162223	5.7	2
173	A confinement approach to fabricate hybrid PBAs-derived FeCo@NC yolk-shell nanoreactors for bisphenol A degradation. <i>Chemical Engineering Journal</i> , 2022 , 428, 131080	14.7	3
172	Reply to: Detectivities of WS/HfS heterojunctions <i>Nature Nanotechnology</i> , 2022 ,	28.7	2
171	A first principles study of uniaxial strain-stabilized long@ange ferromagnetic ordering in electrenes. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 16576-16580	7.1	1
170	Emergent Midgap Excitons in Large-Size Freestanding 2D Strongly Correlated Perovskite Oxide Films. <i>Advanced Optical Materials</i> , 2021 , 9, 2100025	8.1	2
169	Measurement of direct and indirect bandgaps in synthetic ultrathin MoS2 and WS2 films from photoconductivity spectra. <i>Journal of Applied Physics</i> , 2021 , 129, 155302	2.5	2
168	Internal photoemission of electrons from 2D semiconductor/3D metal barrier structures. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 295101	3	0
167	Emergent Midgap Excitons in Large-Size Freestanding 2D Strongly Correlated Perovskite Oxide Films (Advanced Optical Materials 10/2021). <i>Advanced Optical Materials</i> , 2021 , 9, 2170038	8.1	O
166	Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping. <i>Chinese Chemical Letters</i> , 2021 , 33, 368-368	8.1	1
165	AgS monolayer: an ultrasoft inorganic Lieb lattice. <i>Nanoscale</i> , 2021 , 13, 14008-14015	7.7	1
164	On-Surface Synthesis of Variable Bandgap Nanoporous Graphene. <i>Small</i> , 2021 , 17, e2102246	11	2
163	Room Temperature Ferromagnetism of Monolayer Chromium Telluride with Perpendicular Magnetic Anisotropy. <i>Advanced Materials</i> , 2021 , 33, e2103360	24	17
162	Design of novel pentagonal 2D transitional-metal sulphide monolayers for hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 16201-16209	6.7	13
161	Correlated plasmons in the topological insulator Bi2Se3 induced by long-range electron correlations. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	4
160	High-Throughput Identification of Exfoliable Two-Dimensional Materials with Active Basal Planes for Hydrogen Evolution. <i>ACS Energy Letters</i> , 2020 , 5, 2313-2321	20.1	28
159	Direct control of defects in molybdenum oxide and understanding their high CO2 sorption performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12576-12585	13	2

(2020-2020)

158	High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. <i>Nature Nanotechnology</i> , 2020 , 15, 675-682	28.7	56	
157	Thermally Induced Chiral Aggregation of Dihydrobenzopyrenone on Au(111). <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 35547-35554	9.5	2	
156	Performance Improvement by Ozone Treatment of 2D PdSe. ACS Nano, 2020, 14, 5668-5677	16.7	33	
155	Improving the interfacial properties of CZTS photocathodes by Ag substitution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8862-8867	13	23	
154	Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition-Metal Dichalcogenides. <i>Advanced Science</i> , 2020 , 7, 1902726	13.6	3	
153	Large-scale monolayer molybdenum disulfide (MoS2) for mid-infrared photonics. <i>Nanophotonics</i> , 2020 , 9, 4703-4710	6.3	3	
152	Transition-Metal Dichalcogenides: Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition-Metal Dichalcogenides (Adv. Sci. 10/2020). <i>Advanced Science</i> , 2020 , 7, 2070055	13.6	1	
151	High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. <i>Nano Energy</i> , 2020 , 68, 104304	17.1	75	
150	A novel layered birnessite-type sodium molybdate as dual-ion electrodes for high capacity battery. <i>Electrochimica Acta</i> , 2020 , 363, 137229	6.7	6	
149	Exciton-Enabled Meta-Optics in Two-Dimensional Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2020 , 20, 7964-7972	11.5	5	
148	Interfacial Oxygen-Driven Charge Localization and Plasmon Excitation in Unconventional Superconductors. <i>Advanced Materials</i> , 2020 , 32, e2000153	24	6	
147	Surface Modification of Hematite Photoanodes with CeO Cocatalyst for Improved Photoelectrochemical Water Oxidation Kinetics. <i>ChemSusChem</i> , 2020 , 13, 5489-5496	8.3	8	
146	Black-Phosphorus-Incorporated Hydrogel as a Conductive and Biodegradable Platform for Enhancement of the Neural Differentiation of Mesenchymal Stem Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2000177	15.6	37	
145	Substrate mediated electronic and excitonic reconstruction in a MoS2 monolayer. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11778-11785	7.1	4	
144	Room-Temperature Colossal Magnetoresistance in Terraced Single-Layer Graphene. <i>Advanced Materials</i> , 2020 , 32, e2002201	24	12	
143	Memory Devices: MoS2/Polymer Heterostructures Enabling Stable Resistive Switching and Multistate Randomness (Adv. Mater. 42/2020). <i>Advanced Materials</i> , 2020 , 32, 2070317	24	1	
142	An energy efficient bi-functional electrode for continuous cation-selective capacitive deionization. <i>Nanoscale</i> , 2020 , 12, 22917-22927	7.7	7	
141	MoS /Polymer Heterostructures Enabling Stable Resistive Switching and Multistate Randomness. Advanced Materials, 2020, 32, e2002704	24	11	

140	Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118188	21.8	94
139	Electronic correlation determining correlated plasmons in Sb-doped Bi2Se3. <i>Physical Review B</i> , 2019 , 100,	3.3	3
138	Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. <i>Nature Physics</i> , 2019 , 15, 347-351	16.2	68
137	Unraveling High-Yield Phase-Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. <i>Advanced Science</i> , 2019 , 6, 1802093	13.6	14
136	Energy Band Alignment of a Monolayer MoS2 with SiO2 and Al2O3 Insulators from Internal Photoemission. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1800616	1.6	9
135	Modulation of New Excitons in Transition Metal Dichalcogenide-Perovskite Oxide System. <i>Advanced Science</i> , 2019 , 6, 1900446	13.6	3
134	Discovery of Hidden Classes of Layered Electrides by Extensive High-Throughput Material Screening. <i>Chemistry of Materials</i> , 2019 , 31, 1860-1868	9.6	16
133	Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS for High-Performance Field-Effect Transistors. <i>ACS Applied Materials & Description of the High-Performance Field-Effect Transistors</i> . <i>ACS Applied Materials & Description of the Highly Crystalline MoS for High-Performance Field-Effect Transistors</i> . <i>ACS Applied Materials & Description of the Highly Crystalline MoS for Highly Crystalline MoS fo</i>	48 ⁵	4
132	Giant Enhancements of Perpendicular Magnetic Anisotropy and Spin-Orbit Torque by a MoS Layer. <i>Advanced Materials</i> , 2019 , 31, e1900776	24	40
131	The supramolecular structure and van der Waals interactions affect the electronic structure of ferrocenyl-alkanethiolate SAMs on gold and silver electrodes. <i>Nanoscale Advances</i> , 2019 , 1, 1991-2002	5.1	7
130	Modulating Charge Density Wave Order in a 1T-TaS/Black Phosphorus Heterostructure. <i>Nano Letters</i> , 2019 , 19, 2840-2849	11.5	13
129	Design of pentagonal NbX monolayers for electronics and electrocatalysis. <i>Applied Surface Science</i> , 2019 , 479, 595-600	6.7	11
128	Formation of two-dimensional small polarons at the conducting LaAlO3/SrTiO3 interface. <i>Physical Review B</i> , 2019 , 100,	3.3	3
127	Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. <i>Science Advances</i> , 2019 , 5, eaaw2347	14.3	37
126	Excitons: Modulation of New Excitons in Transition Metal Dichalcogenide-Perovskite Oxide System (Adv. Sci. 12/2019). <i>Advanced Science</i> , 2019 , 6, 1970073	13.6	2
125	Selective self-assembly of 2,3-diaminophenazine molecules on MoSe mirror twin boundaries. <i>Nature Communications</i> , 2019 , 10, 2847	17.4	17
124	Diindenoperylene thin-film structure on MoS2 monolayer. <i>Applied Physics Letters</i> , 2019 , 114, 251906	3.4	10
123	Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. <i>Nano Letters</i> , 2019 , 19, 5109-5117	11.5	80

(2018-2019)

122	Tunable spin and orbital polarization in SrTiO3-based heterostructures. <i>New Journal of Physics</i> , 2019 , 21, 103016	2.9	3
121	Revealing the Grain Boundary Formation Mechanism and Kinetics during Polycrystalline MoS Growth. <i>ACS Applied Materials & Discreta (Materials & Materials & Materi</i>	9.5	17
120	Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin-Orbit Coupling. <i>ACS Nano</i> , 2019 , 13, 14529-14539	16.7	5
119	Atomically Thin 2D Transition Metal Oxides: Structural Reconstruction, Interaction with Substrates, and Potential Applications. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801160	4.6	63
118	Understanding the Roles of NiO in Enhancing the Photoelectrochemical Performance of BiVO Photoanodes for Solar Water Splitting. <i>ChemSusChem</i> , 2019 , 12, 2022-2028	8.3	21
117	Electronic properties of atomically thin MoS layers grown by physical vapour deposition: band structure and energy level alignment at layer/substrate interfaces RSC Advances, 2018, 8, 7744-7752	3.7	15
116	Large Enhancement of 2D Electron Gases Mobility Induced by Interfacial Localized Electron Screening Effect. <i>Advanced Materials</i> , 2018 , 30, e1707428	24	10
115	Modification of Vapor Phase Concentrations in MoS Growth Using a NiO Foam Barrier. <i>ACS Nano</i> , 2018 , 12, 1339-1349	16.7	62
114	Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 9116-9122	9.5	17
113	Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. <i>Physical Review B</i> , 2018 , 97,	3.3	76
112	Phonon-Mediated Colossal Magnetoresistance in Graphene/Black Phosphorus Heterostructures. <i>Nano Letters</i> , 2018 , 18, 3377-3383	11.5	21
111	Band alignment of 2D WS2/HfO2 interfaces from x-ray photoelectron spectroscopy and first-principles calculations. <i>Applied Physics Letters</i> , 2018 , 112, 171604	3.4	12
110	3D heterostructured pure and N-Doped Ni3S2/VS2 nanosheets for high efficient overall water splitting. <i>Electrochimica Acta</i> , 2018 , 269, 55-61	6.7	91
109	Defect Evolution Enhanced Visible-Light Photocatalytic Activity in Nitrogen-Doped Anatase TiO2 Thin Films. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 16600-16606	3.8	15
108	Robust two-dimensional bipolar magnetic semiconductors by defect engineering. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8435-8443	7.1	12
107	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 22042-22049	9.5	15
106	Direct Observation of Room-Temperature Stable Magnetism in LaAlO/SrTiO Heterostructures. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 9774-9781	9.5	9
105	Band alignment at interfaces of synthetic few-monolayer MoS2 with SiO2 from internal photoemission. <i>APL Materials</i> , 2018 , 6, 026801	5.7	15

104	High-Throughput Computational Screening of Vertical 2D van der Waals Heterostructures for High-efficiency Excitonic Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 32142-32150	9.5	41
103	Direct observation of anisotropic small-hole polarons in an orthorhombic structure of BiVO4 films. <i>Physical Review B</i> , 2018 , 97,	3.3	3
102	Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure. <i>Nature Nanotechnology</i> , 2018 , 13, 828-834	28.7	74
101	Facile Synthesis of Vanadium-Doped NiS Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 5959-5967	9.5	138
100	Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. <i>Nano Research</i> , 2017 , 10, 3103-3112	10	41
99	Prospects of spintronics based on 2D materials. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2017 , 7, e1313	7.9	105
98	Tunable and low-loss correlated plasmons in Mott-like insulating oxides. <i>Nature Communications</i> , 2017 , 8, 15271	17.4	30
97	Revealing the Role of Potassium Treatment in CZTSSe Thin Film Solar Cells. <i>Chemistry of Materials</i> , 2017 , 29, 4273-4281	9.6	31
96	Minimizing Isolate Catalyst Motion in Metal-Assisted Chemical Etching for Deep Trenching of Silicon Nanohole Array. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 20981-20990	9.5	27
95	Tuning Contact Barrier Height between Metals and MoS2 Monolayer through Interface Engineering. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700035	4.6	14
94	Pressure induced topological phase transition in layered BiS. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 29372-29380	3.6	12
93	Tunable Fluorescence Properties Due to Carbon Incorporation in Zinc Oxide Nanowires. <i>Advanced Optical Materials</i> , 2017 , 5, 1700381	8.1	7
92	Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching. <i>ACS Nano</i> , 2017 , 11, 10193-10205	16.7	26
91	Efficient coupling of a hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17954-17962	13	61
90	La interstitial defect-induced insulator-metal transition in the oxide heterostructures LaAlO3/SrTiO3. <i>Physical Review B</i> , 2017 , 96,	3.3	6
89	Si24: An Efficient Solar Cell Material. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 15574-15579	3.8	13
88	Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16748-16756	13	141
87	Giant crystalline anisotropic magnetoresistance in nonmagnetic perovskite oxide heterostructures. <i>Physical Review B</i> , 2017 , 95,	3.3	14

(2015-2017)

86	Layer-dependent semiconductor-metal transition of SnO/Si(001) heterostructure and device application. <i>Scientific Reports</i> , 2017 , 7, 2570	4.9	2
85	Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M=Ge,Sn; X=S,Se,Te). <i>Physical Review B</i> , 2017 , 95,	3.3	129
84	Abnormal behavior of potassium adsorbed phosphorene. <i>International Journal of Computational Materials Science and Engineering</i> , 2017 , 06, 1850002	0.3	
83	Achieving giant tunneling electroresistance and magnetoresistance by BaTiO3/SrTiO3 barrier and Heusler alloy electrode. <i>Physical Review Materials</i> , 2017 , 1,	3.2	3
82	Immobilization of dye pollutants on iron hydroxide coated substrates: kinetics, efficiency and the adsorption mechanism. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13280-13288	13	42
81	The stability of aluminium oxide monolayer and its interface with two-dimensional materials. <i>Scientific Reports</i> , 2016 , 6, 29221	4.9	39
80	Tuning polarization states and interface properties of BaTiO3/SrTiO3 heterostructure by metal capping layers. <i>Physical Review B</i> , 2016 , 93,	3.3	5
79	Giant tunneling electroresistance induced by ferroelectrically switchable two-dimensional electron gas at nonpolar BaTiO3/SrTiO3 interface. <i>Physical Review B</i> , 2016 , 94,	3.3	11
78	Orbital dependent ultrafast charge transfer dynamics of ferrocenyl-functionalized SAMs on gold studied by core-hole clock spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 094006	1.8	7
77	Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenumßulfide. <i>Nature Materials</i> , 2016 , 15, 640-6	27	379
76	Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon. <i>Scientific Reports</i> , 2016 , 6, 36582	4.9	26
75	Interfacial Interaction between HfO2 and MoS2: From Thin Films to Monolayer. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 9804-9810	3.8	23
74	Substoichiometric Molybdenum Sulfide Phases with Catalytically Active Basal Planes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14121-14128	16.4	22
73	Detrimental Effects of Oxygen Vacancies in Electrochromic Molybdenum Oxide. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 10592-10601	3.8	38
72	Large-scale two-dimensional MoSIphotodetectors by magnetron sputtering. <i>Optics Express</i> , 2015 , 23, 13580-6	3.3	74
71	Optical conductivity renormalization of graphene on SrTiO3 due to resonant excitonic effects mediated by Ti 3d orbitals. <i>Physical Review B</i> , 2015 , 91,	3.3	19
70	Band Bending Inversion in Bi2Se3 Nanostructures. <i>Nano Letters</i> , 2015 , 15, 7503-7	11.5	29
69	Graphene stabilized high-Idielectric Y2O3 (111) monolayers and their interfacial properties. <i>RSC Advances</i> , 2015 , 5, 83588-83593	3.7	14

68	Electronic and transport properties of phosphorene nanoribbons. <i>Physical Review B</i> , 2015 , 92,	3.3	105
67	Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). <i>Nano Letters</i> , 2015 , 15, 80-7	11.5	131
66	Ferromagnetism of wide-bandgap semiconductor surfaces: Mg-doped AlN. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 110302	1.4	2
65	Interplay of electronic reconstructions, surface oxygen vacancies, and lattice distortions in insulator-metal transition of LaAlO3/SrTiO3. <i>Physical Review B</i> , 2015 , 92,	3.3	30
64	Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping. <i>AIP Advances</i> , 2015 , 5, 067163	1.5	4
63	The effect of oxygen vacancies on the electronic structures, magnetic properties and the stability of SrTiO3(001) surface. <i>Surface Science</i> , 2015 , 641, 37-50	1.8	7
62	Atomic N Modified Rutile TiO2(110) Surface Layer with Significant Visible Light Photoactivity. Journal of Physical Chemistry C, 2014 , 118, 994-1000	3.8	26
61	Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. <i>Nature Communications</i> , 2014 , 5, 5461	17.4	61
60	Biaxial strain-induced transport property changes in atomically tailored SrTiO3-based systems. <i>Physical Review B</i> , 2014 , 90,	3.3	32
59	Efficient Spin Injection into Graphene through a Tunnel Barrier: Overcoming the Spin-Conductance Mismatch. <i>Physical Review Applied</i> , 2014 , 2,	4.3	33
58	Surface magnetism of Mg doped AlN: a first principle study. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 435801	1.8	4
57	The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. <i>Applied Physics Letters</i> , 2014 , 104, 232110	3.4	46
56	Band alignment and interfacial structure of ZnO/Si heterojunction with Al2O3 and HfO2 as interlayers. <i>Applied Physics Letters</i> , 2014 , 104, 161602	3.4	35
55	Reversible room-temperature ferromagnetism in Nb-doped SrTiO3 single crystals. <i>Physical Review B</i> , 2013 , 87,	3.3	25
54	Simultaneous magnetic and charge doping of topological insulators with carbon. <i>Physical Review Letters</i> , 2013 , 111, 236803	7.4	12
53	Orientation control of epitaxial Ge thin films growth on SrTiO3 (100) by ultrahigh vacuum sputtering. <i>Thin Solid Films</i> , 2012 , 520, 4880-4883	2.2	1
52	First-Principles Study of Hydrogenation of Ethylene on a HxMoO3(010) Surface. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24630-24638	3.8	23
51	First-principles study of the effect of BiGa heteroantisites in GaAs:Bi alloy. <i>Computational Materials Science</i> , 2012 , 63, 178-181	3.2	11

(2010-2012)

50	Graphene Oxide: An Ideal Support for Gold Nanocatalysts. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22336-22340	3.8	44
49	Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy and Environmental Science, 2012 , 5, 8912	35.4	274
48	Interfacial Properties of Silicon Nitride Grown on Epitaxial Graphene on 6H-SiC Substrate. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22315-22318	3.8	10
47	First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber. <i>Optics Express</i> , 2012 , 20, 6258-66	3.3	22
46	First principles study of bismuth alloying effects in GaAs saturable absorber. <i>Optics Express</i> , 2012 , 20, 11574-80	3.3	18
45	Tailoring the electronic properties of SrRuO3 films in SrRuO3/LaAlO3 superlattices. <i>Applied Physics Letters</i> , 2012 , 101, 223105	3.4	17
44	Magnetic and transport properties of Mn3\(\text{MgO/Mn3\(\text{MgO}\)}\) and the magnetic tunnel junctions: A first-principles study. Applied Physics Letters, 2012, 100, 022408	3.4	45
43	Effect of interfacial strain on spin injection and spin polarization of Co 2 CrAl/NaNbO 3 /Co 2 CrAl magnetic tunneling junction. <i>Europhysics Letters</i> , 2012 , 99, 37001	1.6	10
42	Charge and spin transport in graphene-based heterostructure. <i>Applied Physics Letters</i> , 2011 , 98, 053107	1 3.4	59
41	Hexagonal TiO2 for Photoelectrochemical Applications. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 180	42 , \$80	1 45 5
40	Manipulating absorption and diffusion of H atom on graphene by mechanical strain. <i>AIP Advances</i> , 2011 , 1, 032109	1.5	24
39	Fabrication of a \$hbox{TiN}_{x}/hbox{Ni/Au}\$ Contact on ZnO Films With High Thermal Stability and Low Resistance. <i>IEEE Transactions on Electron Devices</i> , 2011 , 58, 4297-4300	2.9	1
38	Graphene on Esi3N4: An ideal system for graphene-based electronics. AIP Advances, 2011, 1, 032111	1.5	19
37	First-principles study of NiSi2/HfO2interfaces: energetics and Schottky-barrier heights. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 405302	3	
36	A synchrotron-based photoemission study of the MoO3to interface. <i>Journal of Chemical Physics</i> , 2011 , 134, 034706	3.9	13
35	Effects of nitrogen incorporation on the electronic structure of rutile-TiO2. <i>Journal of Applied Physics</i> , 2011 , 109, 023707	2.5	10
34	In situ photoemission spectroscopy study on formation of HfO2 dielectrics on epitaxial graphene on SiC substrate. <i>Applied Physics Letters</i> , 2010 , 96, 072111	3.4	12
33	Two-dimensional graphene superlattice made with partial hydrogenation. <i>Applied Physics Letters</i> , 2010 , 96, 193115	3.4	44

32	Band alignments at SrZrO3/Ge(001) interface: Thermal annealing effects. <i>Applied Surface Science</i> , 2010 , 256, 4850-4853	6.7	7
31	Atomic and electronic structures at ZnO and ZrO2 interface for transparent thin-film transistors. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 1731-1734	1.6	13
30	Band offsets of HfO2/ZnO interface: In situ x-ray photoelectron spectroscopy measurement and ab initio calculation. <i>Applied Physics Letters</i> , 2009 , 95, 162104	3.4	26
29	Effects of edge passivation by hydrogen on electronic structure of armchair graphene nanoribbon and band gap engineering. <i>Applied Physics Letters</i> , 2009 , 94, 122111	3.4	100
28	Electronic structures of Ei3N4(0001)/Si(111) interfaces: Perfect bonding and dangling bond effects. <i>Journal of Applied Physics</i> , 2009 , 105, 024108	2.5	23
27	Glass forming abilities of binary Cu100\(\mathbb{\text{Z}}\)rx (34, 35.5, and 38.2 at. %) metallic glasses: A LAMMPS study. <i>Journal of Applied Physics</i> , 2009 , 105, 043521	2.5	39
26	Impact of oxide defects on band offset at GeO2/Ge interface. <i>Applied Physics Letters</i> , 2009 , 94, 142903	3.4	61
25	Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	254
24	Silicon Carbide Nanotubes As Potential Gas Sensors for CO and HCN Detection. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 15985-15988	3.8	121
23	Effect of atomic hydrogen on boron-doped germanium: An ab initio study. <i>Applied Physics Letters</i> , 2008 , 93, 082107	3.4	1
22	Interface properties of Ge3N4/Ge(111): Ab initio and x-ray photoemission spectroscopy study. <i>Applied Physics Letters</i> , 2008 , 93, 222907	3.4	15
21	X-ray photoelectron spectroscopy studies of nitridation on 4H-SiC (0001) surface by direct nitrogen atomic source. <i>Applied Physics Letters</i> , 2008 , 92, 092119	3.4	30
20	Enhancing hole concentration in AlN by Mg:O codoping: Ab initio study. <i>Physical Review B</i> , 2008 , 77,	3.3	23
19	Band alignment of yttrium oxide on various relaxed and strained semiconductor substrates. <i>Journal of Applied Physics</i> , 2008 , 103, 083702	2.5	35
18	Band alignment and thermal stability of HfO2 gate dielectric on SiC. <i>Applied Physics Letters</i> , 2008 , 93, 052104	3.4	20
17	Possible efficient p-type doping of AlN using Be: An ab initio study. <i>Applied Physics Letters</i> , 2007 , 91, 152110	3.4	16
16	Electronic structure of germanium nitride considered for gate dielectrics. <i>Journal of Applied Physics</i> , 2007 , 102, 013507	2.5	32
15	Ab initio study on intrinsic defect properties of germanium nitride considered for gate dielectric. <i>Applied Physics Letters</i> , 2007 , 91, 132906	3.4	9

LIST OF PUBLICATIONS

14	Effect of nitrogen incorporation on the electronic structure and thermal stability of HfO2 gate dielectric. <i>Applied Physics Letters</i> , 2006 , 88, 192103	3.4	56	
13	Thermal stability and band alignments for Ge3N4 dielectrics on Ge. <i>Applied Physics Letters</i> , 2006 , 89, 022105	3.4	53	
12	Impact of interface structure on Schottky-barrier height for NiZrO2(001) interfaces. <i>Applied Physics Letters</i> , 2005 , 86, 132103	3.4	43	
11	First-principles study of ZrO2Bi interfaces: Energetics and band offsets. <i>Physical Review B</i> , 2005 , 72,	3.3	53	
10	Photoemission study of energy-band alignment for RuOxHfO2Bi system. <i>Applied Physics Letters</i> , 2004 , 85, 6155-6157	3.4	34	
9	Effect of doping SiO2 on high-frequency magnetic properties for W-type barium ferrite. <i>Journal of Applied Physics</i> , 2004 , 95, 4235-4239	2.5	36	
8	Energy-band alignments at ZrO2Bi, SiGe, and Ge interfaces. <i>Applied Physics Letters</i> , 2004 , 85, 4418	3.4	56	
7	Reaction of SiO2 with hafnium oxide in low oxygen pressure. <i>Applied Physics Letters</i> , 2003 , 82, 2047-20	43 .4	82	
6	Epitaxial Y-stabilized ZrO2 films on silicon: Dynamic growth process and interface structure. <i>Applied Physics Letters</i> , 2002 , 80, 2541-2543	3.4	96	
5	Crystalline zirconia oxide on silicon as alternative gate dielectrics. <i>Applied Physics Letters</i> , 2001 , 78, 160)4 <u>3</u> 14606	5 82	
4	Microstructure and growth mode at early growth stage of laser-ablated epitaxial Pb(Zr0.52Ti0.48)O3 films on a SrTiO3 substrate. <i>Journal of Applied Physics</i> , 2001 , 89, 4497-4502	2.5	22	
3	Oxygen-deficiency-activated charge ordering in La2/3Sr1/3MnO3Ithin films. <i>Applied Physics Letters</i> , 2000 , 76, 1051-1053	3.4	42	
2	Selective hydrogenation improves interface properties of high-k dielectrics on 2D semiconductors. <i>Nano Research</i> ,1	10	1	
1	Wafer-Scale 2H-MoS 2 Monolayer for High Surface-enhanced Raman Scattering Performance: Charge-Transfer Coupled with Molecule Resonance. <i>Advanced Materials Technologies</i> ,2200217	6.8	О	