Afshin Namiranian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2814345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caffeine adsorption on hybrid hBN/graphene hexagonal nanoflakes: A density functional tight binding study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115118.	3.5	2
2	Strain impacts on commensurate bilayer graphene superlattices: Distorted trigonal warping, emergence of bandgap and direct-indirect bandgap transition. Diamond and Related Materials, 2019, 92, 228-234.	3.9	7
3	Grapheneâ€hBN Hybrid Nanogap for Boosting DNA Nucleobases Recognition Sensitivity. ChemNanoMat, 2019, 5, 488-498.	2.8	3
4	Impacts of in-plane strain on commensurate graphene/hexagonal boron nitride superlattices. Physica B: Condensed Matter, 2019, 565, 33-39.	2.7	6
5	How doping configuration affects electron transport in monolayer zigzag graphene nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 244-248.	2.7	2
6	Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function. Physical Chemistry Chemical Physics, 2018, 20, 4160-4166.	2.8	6
7	Effect of electron-RBM phonon interaction on conductance of metallic zigzag carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 66-70.	2.7	0
8	Role of interlayer spacing in electrical transport of bilayer graphene nanoribbon: Perpendicular and armchair direction. Superlattices and Microstructures, 2017, 101, 354-361.	3.1	3
9	Electron transport in graphene/h-BN lateral hybrids: Rhombus and bowtie domains. Superlattices and Microstructures, 2017, 109, 264-272.	3.1	7
10	Electrical Conductance of a Zig Zag Carbon Nanotube in the Presence of a Few Vacancies Using Recursive Green's Function Method. ECS Journal of Solid State Science and Technology, 2017, 6, M92-M96.	1.8	0
11	Differential conductance of armchair single-wall carbon nanotubes due to presence of electron–phonon interaction. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 79-83.	2.7	1
12	Random vacancy effect on the electronic transport of zigzag graphene nanoribbon using recursive Green's function. Computational Materials Science, 2015, 101, 156-163.	3.0	10
13	Electronic features induced by Stone–Wales defects in zigzag and chiral carbon nanotubes. Computational Materials Science, 2013, 79, 82-86.	3.0	15
14	The estimation of current and differential conductance of armchair single-wall carbon nanotubes via dissipative energy method. European Physical Journal B, 2013, 86, 1.	1.5	0
15	Stone–Wales defects can cause a metal–semiconductor transition in carbon nanotubes depending on their orientation. Journal of Physics Condensed Matter, 2012, 24, 035301.	1.8	12
16	Spin-polarized transport in zigzag graphene nanoribbons with Rashba spin–orbit interaction. Journal of Applied Physics, 2011, 110, 103702.	2.5	9
17	Spectroscopy of phonon modes of a single-wall armchair carbon nanotube using measurements of nonlinear conductance: Theory. Scientia Iranica, 2011, 18, 1609-1613.	0.4	0
18	The effect of the orientation of the Stone–Wales defects on the bands structure of carbon nanotubes. Journal of Physics: Conference Series, 2010, 248, 012010.	0.4	1

AFSHIN NAMIRANIAN

#	Article	IF	CITATIONS
19	Effect of magnetic impurity on spin-polarized transport in armchair single-wall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 97-101.	2.7	0
20	Effect of single magnetic atom on spin-polarized transport of armchair graphene nanoribbons. Solid State Communications, 2010, 150, 1537-1541.	1.9	3
21	Nonlinear conductance reveals positions of carbon atoms in metallic single-wall carbon nanotubes. European Physical Journal B, 2009, 72, 89-95.	1.5	4
22	Ground state study of simple atoms within a nanoscale box. Solid State Communications, 2008, 145, 594-599.	1.9	4
23	Nonlinear conductance in finite-length armchair single-wall carbon nanotubes with one single impurity. Journal of Physics Condensed Matter, 2008, 20, 135213.	1.8	6
24	Nonlinear effect in conductance of a finite-length armchair single-wall carbon nanotube due to presence of a single impurity. Journal of Physics: Conference Series, 2008, 129, 012010.	0.4	0
25	Effects of band structure and quantum interference on the differential conductance of infinite metallic single-wall carbon nanotubes. Journal of Physics Condensed Matter, 2007, 19, 469001.	1.8	0
26	Effects of band structure and quantum interference on the differential conductance of infinite metallic single-wall carbon nanotubes. Journal of Physics Condensed Matter, 2007, 19, 096207.	1.8	4
27	Voltage-dependent conductance and shot noise in quantum microconstrictions with single defects. Physical Review B, 2004, 70, .	3.2	4
28	Quantum interference effect in the nonlinear conductance of metallic single-wall nanotubes. Physical Review B, 2004, 70, .	3.2	9
29	Nonlinear conductance of a quantum microconstriction with single slow two-level system. Physical Review B, 2004, 70, .	3.2	0
30	Conductance of metallic single-wall nanotubes with single magnetic impurities. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 833-837.	2.7	0
31	Modeling of tunneling spectroscopy in high-T[sub C] superconductors. Low Temperature Physics, 2001, 27, 10.	0.6	5
32	Conductivity of a two-dimensional curved microconstriction. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 549-552.	2.7	10
33	The quantum conductance of ballistic microconstrictions in metals with an open Fermi surface. Low Temperature Physics, 2000, 26, 513-516.	0.6	0
34	The influence of single magnetic impurities on the conductance of quantum microconstrictions. Low Temperature Physics, 2000, 26, 508-512.	0.6	1
35	Effect of quantum interference in the nonlinear conductance of metallic microconstrictions. Physical Review B, 2000, 61, 16796-16800.	3.2	24