Mahmood Kamali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2814187/publications.pdf

Version: 2024-02-01

1307594 1199594 17 156 7 12 citations g-index h-index papers 20 20 20 187 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Catalytic Switching in the Multi-component Synthesis of Novel Thioethers Based on 4-Hydroxy-2-pyridones. Organic Preparations and Procedures International, 2022, 54, 167-177.	1.3	1
2	SnCl2 \hat{a} 2H2O catalyzed one-pot three components synthesis of pyrano[4,3-b]chromenes and chromeno[4,3-b]chromenes. Synthetic Communications, 2020, , 1-9.	2.1	2
3	Temperatureâ€Dependent Green Synthesis of New Series of Mannich Bases from 4â€Hydroxyâ€pyridineâ€2â€one and Their Antioxidant Activity Evaluation. ChemistrySelect, 2020, 5, 1709-1712.	1.5	13
4	One-pot, solvent-free, and efficient synthesis of 2,4,6-triarylpyridines using CoCl ₂ .6H ₂ O as a recyclable catalyst. Cogent Chemistry, 2016, 2, 1171123.	2.5	8
5	One-pot, solvent-free synthesis via Biginelli reaction: Catalyst-free and new recyclable catalysts. Cogent Chemistry, 2015, 1, 1081667.	2.5	18
6	Synthesis of new aza- and thia-crown ethers and their metal ion templates synthesis as model case study. Arkivoc, 2014, 2014, 242-251.	0.5	4
7	A Simple and Eco-Compatible One-Pot Synthesis of New Symmetrical Dithiocarbamate Podands and Their Dynamic NMR Studies. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1271-1280.	1.6	2
8	Comparative study of carbon paste electrodes modified by new pentaaza macrocyclic ligands and gold nanoparticles embedded in three-dimensional sol–gel network for determination of trace amounts of Ag(I). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76, 283-291.	1.6	10
9	One-Pot and Solvent-Free Synthesis of 1,4-Dihydropyridines and 3,4-Dihydropyrimidine-2-ones Using New Synthetic Recyclable Catalyst via Biginelli and Hantzsch Reactions. Synthetic Communications, 2013, 43, 1477-1483.	2.1	22
10	Synthesis and Dynamic NMR Studies of Some New Symmetrical Podands of Dithiocarbamates Formed from Bis(Nâ€thiazol)chloroacetamides. Journal of Heterocyclic Chemistry, 2013, 50, 209-215.	2.6	3
11	Solution processable polyamides containing thiazole units and thioether linkages with high optical transparency, high refractive index, and low birefringence. Journal of Polymer Science Part A, 2013, 51, 3505-3515.	2.3	27
12	Synthesis and Template Studies of New Aza Macrocycles and one Cryptand Based on 2,6-diaminopyridine and its Computational NMR Studies Using Density Functional Theory. Letters in Organic Chemistry, 2013, 10, 256-262.	0.5	3
13	Comparative studies on carbon paste electrodes based on three dithiocarbamate podands as ionophore in $Ag(i)$ sensors. Analytical Methods, 2012, 4, 742.	2.7	7
14	Synthesis of New Aza Macrocyclic Diamides 2,2′â€Diaminodiphenyl Sulfide Using Crab‣ike Method. Journal of Heterocyclic Chemistry, 2012, 49, 499-503.	2.6	4
15	Highly refractive and organoâ€soluble poly(amide imide)s based on 5,5′â€thiobis(2â€aminoâ€4â€methylâ€thia Synthesis and characterization. Journal of Applied Polymer Science, 2012, 125, 1521-1529.	zole): 2.6	21
16	A simple and efficient synthesis and dynamic NMR studies of some new podands of dithiocarbamates formed from bis(naphthyl) derivatives. Heteroatom Chemistry, 2011, 22, 659-668.	0.7	6
17	Oneâ€pot threeâ€component synthesis of novel chromeno[3,2―c]pyridineâ€1,9(2 H)â€diones by using SnCl 2 2 O as catalyst. Journal of Heterocyclic Chemistry, 0, , .	l â<2H 2.6	5