List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2813873/publications.pdf Version: 2024-02-01

FDIK VANEM

#	Article	IF	CITATIONS
1	Quantitative comparison of environmental contour approaches. Ocean Engineering, 2022, 245, 110374.	4.3	7
2	A truncated, translated Weibull distribution for shallow water sea states. Coastal Engineering, 2022, 172, 104077.	4.0	9
3	Fullest COLREGs Evaluation Using Fuzzy Logic for Collaborative Decision-Making Analysis of Autonomous Ships in Complex Situations. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 18433-18445.	8.0	20
4	Environmental contours as Voronoi cells. Extremes, 2022, 25, 451-486.	1.0	4
5	Combined machine learning and physics-based models for estimating fuel consumption of cargo ships. Ocean Engineering, 2022, 255, 111435.	4.3	10
6	Multivariable Fractional Polynomials for lithium-ion batteries degradation models under dynamic conditions. Journal of Energy Storage, 2022, 52, 104903.	8.1	8
7	Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine. Journal of Marine Engineering and Technology, 2021, 20, 217-234.	4.1	20
8	Testbed Scenario Design Exploiting Traffic Big Data for Autonomous Ship Trials Under Multiple Conflicts With Collision/Grounding Risks and Spatio-Temporal Dependencies. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 7914-7930.	8.0	20
9	AIS-based near-collision database generation and analysis of real collision avoidance manoeuvres. Journal of Navigation, 2021, 74, 985-1008.	1.7	7
10	Non-stationary extreme value analysis of sea states based on linear trends. Analysis of annual maxima series of significant wave height and peak period in the Mediterranean Sea. Coastal Engineering, 2021, 167, 103896.	4.0	24
11	Convex environmental contours. Ocean Engineering, 2021, 235, 109366.	4.3	3
12	A benchmarking exercise for environmental contours. Ocean Engineering, 2021, 236, 109504.	4.3	26
13	Data-driven state of health modelling—A review of state of the art and reflections on applications for maritime battery systems. Journal of Energy Storage, 2021, 43, 103158.	8.1	35
14	Application of the Tail Equivalent Linearization Method to wave bending moment and comparison with experimental data. Probabilistic Engineering Mechanics, 2021, 67, 103174.	2.7	0
15	The effect of serial correlation in environmental conditions on estimates of extreme events. Ocean Engineering, 2021, 242, 110092.	4.3	14
16	Comparing different contour methods with response-based methods for extreme ship response analysis. Marine Structures, 2020, 69, 102680.	3.8	22
17	AIS-Based Multiple Vessel Collision and Grounding Risk Identification based on Adaptive Safety Domain. Journal of Marine Science and Engineering, 2020, 8, 5.	2.6	56
18	On environmental contours for marine and coastal design. Ocean Engineering, 2020, 195, 106194.	4.3	54

#	Article	IF	CITATIONS
19	Environmental contours for circularâ€linear variables based on the direct sampling method. Wind Energy, 2020, 23, 563-574.	4.2	12
20	Sequential sampling method using Gaussian process regression for estimating extreme structural response. Marine Structures, 2020, 72, 102780.	3.8	14
21	Bivariate regional extreme value analysis for significant wave height and wave period. Applied Ocean Research, 2020, 101, 102266.	4.1	17
22	Statistical Approximation to Synthetic Midship Hull Girder Stress Response. Journal of Ship Research, 2020, 64, 266-277.	1.1	1
23	3-dimensional environmental contours based on a direct sampling method for structural reliability analysis of ships and offshore structures. Ships and Offshore Structures, 2019, 14, 74-85.	1.9	32
24	A simulation study on the uncertainty of environmental contours due to sampling variability for different estimation methods. Applied Ocean Research, 2019, 91, 101870.	4.1	28
25	Probabilistic analysis of offshore wind turbines under extreme resonant response: Application of environmental contour method. Applied Ocean Research, 2019, 93, 101947.	4.1	39
26	Study on the Effect of Climate Change on Ship Responses Based on Nonlinear Simulations. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	1.2	8
27	Environmental contours for describing extreme ocean wave conditions based on combined datasets. Stochastic Environmental Research and Risk Assessment, 2019, 33, 957-971.	4.0	7
28	Statistical description and modelling of extreme ocean wave conditions. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2019, 172, 124-132.	0.2	23
29	Efficient on-line anomaly detection for ship systems in operation. Expert Systems With Applications, 2019, 121, 418-437.	7.6	20
30	Environmental contours for mixtures of distributions. , 2019, , .		1
31	Comparison of the Environmental Contour Method and Response-Based Analysis Using Response Emulator for Estimating Extreme Ship Responses. , 2019, , .		0
32	On Environmental Contours for Marine and Coastal Design. , 2019, , .		1
33	A simple approach to account for seasonality in the description of extreme ocean environments. Marine Systems and Ocean Technology, 2018, 13, 63-73.	1.0	31
34	Nonstationary fuzzy forecasting of wind and wave climate in very long-term scales. Journal of Ocean Engineering and Science, 2018, 3, 144-155.	4.3	12
35	Climate change and safe design of ship structures. Ocean Engineering, 2018, 149, 226-237.	4.3	41
36	Probabilistic design and reliability analysis of scour protections for offshore windfarms. Engineering Failure Analysis, 2018, 91, 291-305.	4.0	32

#	Article	IF	CITATIONS
37	Uncertainty of Environmental Contours due to Sampling Variability. , 2018, , .		1
38	Cluster-Based Anomaly Detection in Condition Monitoring of a Marine Engine System. , 2018, , .		4
39	Ship speed prediction based on full scale sensor measurements of shaft thrust and environmental conditions. Ocean Engineering, 2018, 162, 316-330.	4.3	33
40	Asymmetric copula–based distribution models for met-ocean data in offshore wind engineering applications. Wind Engineering, 2018, 42, 304-334.	1.9	46
41	Comparison of Wind and Wave Extremes in Very Long-Term Climatic Scales. , 2018, , .		0
42	Study on the Effect of Climate Change on Ship Responses Based on Nonlinear Simulations. , 2018, , .		0
43	Projected changes in significant wave height toward the end of the 21st century: Northeast <scp>A</scp> tlantic. Journal of Geophysical Research: Oceans, 2017, 122, 3394-3403.	2.6	72
44	On the Influence of Environmental Contour Method in Estimating Extreme Structural Response. , 2017, , ,		0
45	Climatic Forecasting of Wind and Waves Using Fuzzy Inference Systems. , 2017, , .		0
46	A comparison study on the estimation of extreme structural response from different environmental contour methods. Marine Structures, 2017, 56, 137-162.	3.8	49
47	A regional extreme value analysis of ocean waves in a changing climate. Ocean Engineering, 2017, 144, 277-295.	4.3	28
48	Cluster Based Anomaly Detection with Applications in the Maritime Industry. , 2017, , .		3
49	Evaluating properties of environmental contours. , 2017, , .		5
50	Joint statistical models for significant wave height and wave period in a changing climate. Marine Structures, 2016, 49, 180-205.	3.8	138
51	Copula-Based Bivariate Modelling of Significant Wave Height and Wave Period and the Effects of Climate Change on the Joint Distribution. , 2016, , .		3
52	An application of sensor-based anomaly detection in the maritime industry. , 2016, , .		9
53	Uncertainties in extreme value modelling of wave data in a climate change perspective. Journal of Ocean Engineering and Marine Energy, 2015, 1, 339-359.	1.7	63
54	Uncertainties in Extreme Value Analysis of Wave Climate Data and Wave Climate Projections. , 2015, , .		2

#	Article	IF	CITATIONS
55	Alternative Environmental Contours for Marine Structural Design—A Comparison Study1. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	1.2	32
56	Alternative environmental contours for structural reliability analysis. Structural Safety, 2015, 54, 32-45.	5.3	74
57	Non-stationary extreme value models to account for trends and shifts in the extreme wave climate due to climate change. Applied Ocean Research, 2015, 52, 201-211.	4.1	45
58	Alternative Environmental Contours for Marine Structural Design: A Comparison Study. , 2014, , .		4
59	Bayesian hierarchical spatio-temporal modelling of trends and future projections in the ocean wave climate with a \$\$ext{ CO }_2\$\$ CO 2 regression component. Environmental and Ecological Statistics, 2014, 21, 189-220.	3.5	13
60	Spatiotemporal analysis of NORA10 data of significant wave height. Ocean Dynamics, 2014, 64, 879-893.	2.2	5
61	A new Monte Carlo method for environmental contour estimation. , 2014, , 2091-2098.		8
62	Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height. Ocean Engineering & Oceanography, 2013, , .	0.2	4
63	A new approach to environmental contours for ocean engineering applications based on direct Monte Carlo simulations. Ocean Engineering, 2013, 60, 124-135.	4.3	99
64	Identifying trends in the ocean wave climate by time series analyses of significant wave heightdata. Ocean Engineering, 2013, 61, 148-160.	4.3	63
65	Time Series Analysis of Significant Wave Height Data for Identification of Trends in the Ocean Wave Climate. , 2013, , .		1
66	Modelling Long-Term Trends in Significant Wave Height and its Potential Impacts on Ship Structural Loads. , 2013, , .		0
67	A New Method for Environmental Contours in Marine Structural Design. , 2013, , .		4
68	A Bayesian Hierarchical Space-Time Model for Significant Wave Height. Ocean Engineering & Oceanography, 2013, , 65-105.	0.2	2
69	Bayesian Hierarchical Modeling of the Ocean Windiness. Ocean Engineering & Oceanography, 2013, , 153-168.	0.2	0
70	Including a Log-Transform of the Data. Ocean Engineering & Oceanography, 2013, , 107-129.	0.2	0
71	CO \$\$_2\$\$ Regression Component for Future Projections. Ocean Engineering & Oceanography, 2013, , 131-152.	0.2	0
72	Case Study: Modeling the Effect of Climate Change on the World's Oceans. Ocean Engineering & Oceanography, 2013, , 185-210.	0.2	0

#	Article	IF	CITATIONS
73	Application: Impacts on Ship Structural Loads. Ocean Engineering & Oceanography, 2013, , 169-184.	0.2	0
74	Literature Survey on Stochastic Wave Models. Ocean Engineering & Oceanography, 2013, , 25-63.	0.2	1
75	Ethics and fundamental principles of risk acceptance criteria. Safety Science, 2012, 50, 958-967.	4.9	37
76	Modelling the effect of climate change on the wave climate of the world's oceans. Ocean Science Journal, 2012, 47, 123-145.	1.3	14
77	A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic. Stochastic Environmental Research and Risk Assessment, 2012, 26, 609-632.	4.0	41
78	Stochastic modelling of long-term trends in the wave climate and its potential impact on ship structural loads. Applied Ocean Research, 2012, 37, 235-248.	4.1	46
79	Modelling ocean wave climate with a Bayesian hierarchical space–time model and a log-transform of the data. Ocean Dynamics, 2012, 62, 355-375.	2.2	28
80	A Stochastic Model in Space and Time for Monthly Maximum Significant Wave Height. Quantitative Geology and Geostatistics, 2012, , 505-517.	0.1	9
81	A Stochastic Model for Long-Term Trends in Significant Wave Height With a CO2 Regression Component. , 2012, , .		3
82	Risk acceptance criterion for tanker oil spill risk reduction measures. Marine Pollution Bulletin, 2011, 62, 116-127.	5.0	56
83	Long-term time-dependent stochastic modelling of extreme waves. Stochastic Environmental Research and Risk Assessment, 2011, 25, 185-209.	4.0	60
84	A Bayesian-Hierarchical Space-Time Model for Significant Wave Height Data. , 2011, , .		5
85	Evaluating the cost-effectiveness of a monitoring system for improved evacuation from passenger ships. Safety Science, 2010, 48, 788-802.	4.9	21
86	Stochastic Models for Long-Term Prediction of Extreme Waves: A Literature Survey. , 2010, , .		3
87	Standardized Risk Models for Formal Safety Assessment of Maritime Transportation. , 2009, , .		4
88	Analysing the risk of LNG carrier operations. Reliability Engineering and System Safety, 2008, 93, 1328-1344.	8.9	141
89	Cost-effectiveness criteria for marine oil spill preventive measures. Reliability Engineering and System Safety, 2008, 93, 1354-1368.	8.9	76
90	Designing for safety in passenger ships utilizing advanced evacuation analyses—A risk based approach. Safety Science, 2006, 44, 111-135.	4.9	70

#	Article	IF	CITATIONS
91	Optimised Use of Safety Interventions. , 2004, , 1264-1269.		3
92	An Illustration of the Effect of Climate Change on the Ocean Wave Climate - A Stochastic Model. , 0, , .		2