Franck Mauvais-Jarvis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2813422/publications.pdf Version: 2024-02-01

		41258	24915
126	12,884	49	109
papers	citations	h-index	g-index
121	131	131	17070
131	151	151	17278
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Prolonged Islet Allograft Function is Associated With Female Sex in Patients After Islet Transplantation. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e973-e979.	1.8	7
2	Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocrine Reviews, 2022, 43, 720-742.	8.9	37
3	Menopausal hormone therapy and risk of cardiovascular events in women with prediabetes or type 2 diabetes: A pooled analysis of 2917 postmenopausal women. Atherosclerosis, 2022, 344, 13-19.	0.4	2
4	Efficacy of glucagon-like peptide-1 and estrogen dual agonist in pancreatic islets protection and pre-clinical models of insulin-deficient diabetes. Cell Reports Medicine, 2022, 3, 100598.	3.3	6
5	20: METABOLIC SYNDROME AND ARDS IN COVID-19. Critical Care Medicine, 2022, 50, 10-10.	0.4	1
6	Sex Differences in the Progression of Metabolic Risk Factors in Diabetes Development. JAMA Network Open, 2022, 5, e2222070.	2.8	18
7	Metabolic Syndrome and COVID-19 Mortality Among Adult Black Patients in New Orleans. Diabetes Care, 2021, 44, 188-193.	4.3	82
8	Clinical characteristics and outcomes in women and men hospitalized for coronavirus disease 2019 in New Orleans. Biology of Sex Differences, 2021, 12, 20.	1.8	35
9	Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacological Reviews, 2021, 73, 730-762.	7.1	80
10	Sex differences in soluble prorenin receptor in patients with type 2 diabetes. Biology of Sex Differences, 2021, 12, 33.	1.8	10
11	Do Anti-androgens Have Potential as Therapeutics for COVID-19?. Endocrinology, 2021, 162, .	1.4	11
12	SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight, 2021, 6, .	2.3	36
13	Sex disparities in COVID-19 outcomes of inpatients with diabetes: insights from the CORONADO study. European Journal of Endocrinology, 2021, 185, 299-311.	1.9	14
14	Androgenâ€induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB Journal, 2021, 35, e21921.	0.2	19
15	Early Menopause and Cardiovascular Disease Risk in Women With or Without Type 2 Diabetes: A Pooled Analysis of 9,374 Postmenopausal Women. Diabetes Care, 2021, 44, 2564-2572.	4.3	21
16	Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics, 2021, 11, 8076-8091.	4.6	70
17	Steroid Hormones and Receptors in Health and Disease. FASEB Journal, 2021, 35, e21858.	0.2	1
18	Sex-biased islet Î ² cell dysfunction is caused by the MODY MAFA S64F variant by inducing premature aging and senescence in males. Cell Reports, 2021, 37, 109813.	2.9	27

#	Article	IF	CITATIONS
19	132: Metabolic Syndrome and COVID-19 Mortality Among Adult Black Patients in New Orleans. Critical Care Medicine, 2021, 49, 51-51.	0.4	0
20	P.106: Prolonged Islet Allograft Function in Patients With Type 1 Diabetes After Islet Transplantation Is Associated With Female Sex of Donors and Recipients. Transplantation, 2021, 105, S38-S39.	0.5	0
21	Acute estradiol and progesterone therapy in hospitalised adults to reduce COVID-19 severity: a randomised control trial. BMJ Open, 2021, 11, e053684.	0.8	19
22	Metabolic Syndrome and Acute Respiratory Distress Syndrome in Hospitalized Patients With COVID-19. JAMA Network Open, 2021, 4, e2140568.	2.8	39
23	Aging, Male Sex, Obesity, and Metabolic Inflammation Create the Perfect Storm for COVID-19. Diabetes, 2020, 69, 1857-1863.	0.3	138
24	Endocrine Significance of SARS-CoV-2's Reliance on ACE2. Endocrinology, 2020, 161, .	1.4	120
25	Estradiol, Progesterone, Immunomodulation, and COVID-19 Outcomes. Endocrinology, 2020, 161, .	1.4	185
26	Intracrine Testosterone Activation in Human Pancreatic β-Cells Stimulates Insulin Secretion. Diabetes, 2020, 69, 2392-2399.	0.3	13
27	Sex and gender: modifiers of health, disease, and medicine. Lancet, The, 2020, 396, 565-582.	6.3	955
28	Biological sex impacts COVID-19 outcomes. PLoS Pathogens, 2020, 16, e1008570.	2.1	218
29	Preclinical efficacy of the CPER-selective agonist G-1 in mouse models of obesity and diabetes. Science Translational Medicine, 2020, 12, .	5.8	62
30	Effect of conjugated estrogens and bazedoxifene on glucose, energy and lipid metabolism in obese postmenopausal women. European Journal of Endocrinology, 2020, 183, 439-452.	1.9	3
31	Effect of conjugated estrogens and bazedoxifene on glucose, energy and lipid metabolism in obese postmenopausal women. European Journal of Endocrinology, 2020, 183, 439-452.	1.9	10
32	Conjugated Estrogens and Bazedoxifene Improve β Cell Function in Obese Menopausal Women. Journal of the Endocrine Society, 2019, 3, 1583-1594.	0.1	8
33	Sex Differences in Cardiovascular Risk Profile From Childhood to Midlife Between Individuals Who Did and Did Not Develop Diabetes at Follow-up: The Bogalusa Heart Study. Diabetes Care, 2019, 42, 635-643.	4.3	32
34	Sex differences in the pathogenesis of type 2 diabetes may explain the stronger impact of diabetes on atherosclerotic heart disease in women. Journal of Diabetes and Its Complications, 2019, 33, 460-461.	1.2	3
35	Activation of hepatic estrogen receptor-α increases energy expenditure by stimulating the production of fibroblast growth factor 21 in female mice. Molecular Metabolism, 2019, 22, 62-70.	3.0	32
36	Bazedoxifene-induced vasodilation and inhibition of vasoconstriction is significantly greater than estradiol. Menopause, 2019, 26, 172-181.	0.8	8

FRANCK MAUVAIS-JARVIS

#	Article	IF	CITATIONS
37	GLP-1 Receptor in Pancreatic α-Cells Regulates Glucagon Secretion in a Glucose-Dependent Bidirectional Manner. Diabetes, 2019, 68, 34-44.	0.3	61
38	Loss of Nuclear and Membrane Estrogen Receptor-α Differentially Impairs Insulin Secretion and Action in Male and Female Mice. Diabetes, 2019, 68, 490-501.	0.3	43
39	Emerging role of testosterone in pancreatic β cell function and insulin secretion. Journal of Endocrinology, 2019, 240, R97-R105.	1.2	45
40	SUN-022 Absence of Neuronal Androgen Receptor (AR) Improves Glucose Homeostasis in Female Mice. Journal of the Endocrine Society, 2019, 3, .	0.1	0
41	MON-160 Effect Of The Combination Conjugated Estrogens And Bazedoxifene On Glucose Homeostasis In Obese Postmenopausal Women: A Placebo-controlled Randomized Pilot Trial. Journal of the Endocrine Society, 2019, 3, .	0.1	0
42	Gender differences in glucose homeostasis and diabetes. Physiology and Behavior, 2018, 187, 20-23.	1.0	203
43	Estrogen receptor \hat{I}_{\pm} protects pancreatic \hat{I}^2 -cells from apoptosis by preserving mitochondrial function and suppressing endoplasmic reticulum stress. Journal of Biological Chemistry, 2018, 293, 4735-4751.	1.6	70
44	Roles of G protein-coupled estrogen receptor GPER in metabolic regulation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 176, 31-37.	1.2	97
45	Differential sex effects of systolic blood pressure and lowâ€density lipoprotein cholesterol on type 2 diabetes: Life course data from the Bogalusa Heart Study. Journal of Diabetes, 2018, 10, 449-457.	0.8	7
46	Perinatal Exposure to Western Diet Programs Autonomic Dysfunction in the Male Offspring. Cellular and Molecular Neurobiology, 2018, 38, 233-242.	1.7	15
47	The impact of androgen actions in neurons on metabolic health and disease. Molecular and Cellular Endocrinology, 2018, 465, 92-102.	1.6	27
48	Sex Difference In the Effect of Fetal Exposure to Maternal Diabetes on Insulin Secretion. Journal of the Endocrine Society, 2018, 2, 391-397.	0.1	8
49	Estrogens Promote Misfolded Proinsulin Degradation to Protect Insulin Production and Delay Diabetes. Cell Reports, 2018, 24, 181-196.	2.9	61
50	An integrated view of sex differences in metabolic physiology and disease. Molecular Metabolism, 2018, 15, 1-2.	3.0	32
51	Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). Journal of Biological Chemistry, 2018, 293, 12719-12729.	1.6	24
52	Sex differences underlying pancreatic islet biology and its dysfunction. Molecular Metabolism, 2018, 15, 82-91.	3.0	90
53	Androgen excess in pancreatic β cells and neurons predisposes female mice to type 2 diabetes. JCI Insight, 2018, 3, .	2.3	49
54	Effect of menopausal hormone therapy on components of the metabolic syndrome. Therapeutic Advances in Cardiovascular Disease, 2017, 11, 33-43.	1.0	20

FRANCK MAUVAIS-JARVIS

#	Article	IF	CITATIONS
55	The effect of selective estrogen receptor modulators on type 2 diabetes onset in women: Basic and clinical insights. Journal of Diabetes and Its Complications, 2017, 31, 773-779.	1.2	27
56	Is Estradiol a Biomarker of Type 2 Diabetes Risk in Postmenopausal Women?. Diabetes, 2017, 66, 568-570.	0.3	16
57	Menopausal Hormone Therapy and Type 2 Diabetes Prevention: Evidence, Mechanisms, and Clinical Implications. Endocrine Reviews, 2017, 38, 173-188.	8.9	206
58	A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism. Cell Metabolism, 2017, 25, 1216-1230.	7.2	179
59	Androgen receptor-deficient islet Î ² -cells exhibit alteration in genetic markers of insulin secretion and inflammation. A transcriptome analysis in the male mouse. Journal of Diabetes and Its Complications, 2017, 31, 787-795.	1.2	24
60	Nischarin inhibition alters energy metabolism by activating AMP-activated protein kinase. Journal of Biological Chemistry, 2017, 292, 16833-16846.	1.6	25
61	Are estrogens promoting immune modulation and islet protection in type 1 diabetes?. Journal of Diabetes and Its Complications, 2017, 31, 1563-1564.	1.2	5
62	Differential Effects of Linagliptin on the Function of Human Islets Isolated from Non-diabetic and Diabetic Donors. Scientific Reports, 2017, 7, 7964.	1.6	10
63	Epidemiology of Gender Differences in Diabetes and Obesity. Advances in Experimental Medicine and Biology, 2017, 1043, 3-8.	0.8	63
64	The Role of Estrogens in Pancreatic Islet Physiopathology. Advances in Experimental Medicine and Biology, 2017, 1043, 385-399.	0.8	22
65	Menopause, Estrogens, and Glucose Homeostasis in Women. Advances in Experimental Medicine and Biology, 2017, 1043, 217-225.	0.8	14
66	New Insights Into Estrogens Inactivation and Prevention of Systemic Inflammation in Male Subjects. Endocrinology, 2017, 158, 3711-3712.	1.4	0
67	Extranuclear Actions of the Androgen Receptor Enhance Glucose-Stimulated Insulin Secretion in the Male. Cell Metabolism, 2016, 23, 837-851.	7.2	130
68	Role of Sex Steroids in \hat{l}^2 Cell Function, Growth, and Survival. Trends in Endocrinology and Metabolism, 2016, 27, 844-855.	3.1	90
69	The D-Day of ghrelin. Molecular Metabolism, 2016, 5, 433-434.	3.0	0
70	Androgen-deprivation therapy and pancreatic β-cell dysfunction in men. Journal of Diabetes and Its Complications, 2016, 30, 389-390.	1.2	15
71	PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Molecular Therapy, 2016, 24, 251-260.	3.7	42
72	Effect of selective estrogen receptor modulators on metabolic homeostasis. Biochimie, 2016, 124, 92-97.	1.3	37

5

FRANCK MAUVAIS-JARVIS

#	Article	IF	CITATIONS
73	Sex differences in the effects of androgens acting in the central nervous system on metabolism. Dialogues in Clinical Neuroscience, 2016, 18, 415-424.	1.8	27
74	Letter to the Editor: "Dual-5α-Reductase Inhibition Promotes Hepatic Lipid Accumulation in Man―by Hazlehurst J.M., Oprescu A.I., Nikolaou N., et al. Journal of Clinical Endocrinology and Metabolism, 2016, 101, L46-L47.	1.8	0
75	Developing Academic Visibility in the Medical Sciences. Ochsner Journal, 2016, 16, 208-9.	0.5	1
76	Letter to the Editor: "Steroid Sex Hormones, Sex Hormone-Binding Globulin, and Diabetes Incidence in the Diabetes Prevention Program―by Mather K.J., et al. Journal of Clinical Endocrinology and Metabolism, 2015, 100, L126-L127.	1.8	1
77	Effect of targeted estrogen delivery using glucagon-like peptide-1 on insulin secretion, insulin sensitivity and glucose homeostasis. Scientific Reports, 2015, 5, 10211.	1.6	32
78	The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity, 2015, 23, 713-719.	1.5	190
79	Elucidating sex and gender differences in diabetes: a necessary step toward personalized medicine. Journal of Diabetes and Its Complications, 2015, 29, 162-163.	1.2	7
80	Sex differences in metabolic homeostasis, diabetes, and obesity. Biology of Sex Differences, 2015, 6, 14.	1.8	401
81	Trends in Prevalence of the Metabolic Syndrome. JAMA - Journal of the American Medical Association, 2015, 314, 950.	3.8	26
82	The Islet Estrogen Receptor-α Is Induced by Hyperglycemia and Protects Against Oxidative Stress-Induced Insulin-Deficient Diabetes. PLoS ONE, 2014, 9, e87941.	1.1	40
83	Developmental androgenization programs metabolic dysfunction in adult mice. Adipocyte, 2014, 3, 151-154.	1.3	12
84	Central mechanisms of adiposity in adult female mice with androgen excess. Obesity, 2014, 22, 1477-1484.	1.5	51
85	Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. Molecular Metabolism, 2014, 3, 177-190.	3.0	95
86	Human β-Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map. Diabetes, 2014, 63, 819-831.	0.3	155
87	Novel Link Between Inflammation, Endothelial Dysfunction, and Muscle Insulin Resistance. Diabetes, 2013, 62, 688-690.	0.3	7
88	The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocrine Reviews, 2013, 34, 309-338.	8.9	875
89	Developmental androgen excess disrupts reproduction and energy homeostasis in adult male mice. Journal of Endocrinology, 2013, 219, 259-268.	1.2	25
90	Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1321-E1330.	1.8	60

#	Article	IF	CITATIONS
91	β- and α-Cell Dysfunctions in Africans With Ketosis-Prone Atypical Diabetes During Near-Normoglycemic Remission. Diabetes Care, 2013, 36, 118-123.	4.3	32
92	Paracrine and intracrine contributions of androgens and estrogens to adipose tissue biology: physiopathological aspects. Hormone Molecular Biology and Clinical Investigation, 2013, 14, 49-55.	0.3	6
93	Selective estrogen receptor modulation in pancreatic β-cells and the prevention of type 2 diabetes. Islets, 2012, 4, 173-176.	0.9	29
94	Molecular Mechanisms of Estrogen Receptors' Suppression of Lipogenesis in Pancreatic β-Cells. Endocrinology, 2012, 153, 2997-3005.	1.4	51
95	Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nature Reviews Endocrinology, 2012, 8, 342-351.	4.3	183
96	Tribute to Pierre Mauvais-Jarvis, M.D. 1929–2012. A pioneer in the percutaneous delivery of steroid hormones. Steroids, 2012, 77, 717-718.	0.8	1
97	Estrogen Sulfotransferase: Intracrinology Meets Metabolic Diseases. Diabetes, 2012, 61, 1353-1354.	0.3	17
98	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	15.2	241
99	Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends in Endocrinology and Metabolism, 2011, 22, 24-33.	3.1	263
100	Early-Life Exposure to Testosterone Programs the Hypothalamic Melanocortin System. Endocrinology, 2011, 152, 1661-1669.	1.4	104
101	Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents \hat{I}^2 cell failure in rodent models of type 2 diabetes. Journal of Clinical Investigation, 2011, 121, 3331-3342.	3.9	150
102	Minireview: Estrogenic Protection of β-Cell Failure in Metabolic Diseases. Endocrinology, 2010, 151, 859-864.	1.4	118
103	Extranuclear estrogen receptor-α stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13057-13062.	3.3	122
104	Androgen Excess Produces Systemic Oxidative Stress and Predisposes to β-Cell Failure in Female Mice. PLoS ONE, 2010, 5, e11302.	1.1	67
105	Rapid, nongenomic estrogen actions protect pancreatic islet survival. Islets, 2009, 1, 273-275.	0.9	54
106	Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival. Diabetes, 2009, 58, 2292-2302.	0.3	180
107	Multitissue Insulin Resistance Despite Near-Normoglycemic Remission in Africans With Ketosis-Prone Diabetes. Diabetes Care, 2008, 31, 2332-2337.	4.3	31
108	Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 2007, 130, 456-469.	13.5	2,151

#	Article	IF	CITATIONS
109	Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9232-9237.	3.3	413
110	Lack of Support for the Association between GAD2 Polymorphisms and Severe Human Obesity. PLoS Biology, 2005, 3, e315.	2.6	44
111	High Prevalence of Clucose-6-Phosphate Dehydrogenase Deficiency without Gene Mutation Suggests a Novel Genetic Mechanism Predisposing to Ketosis-Prone Diabetes. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4446-4451.	1.8	64
112	p50α/p55α Phosphoinositide 3-Kinase Knockout Mice Exhibit Enhanced Insulin Sensitivity. Molecular and Cellular Biology, 2004, 24, 320-329.	1.1	91
113	PAX4 gene variations predispose to ketosis-prone diabetes. Human Molecular Genetics, 2004, 13, 3151-3159.	1.4	99
114	Antidiabetic actions of estrogen: Insight from human and genetic mouse models. Current Atherosclerosis Reports, 2004, 6, 180-185.	2.0	233
115	Ketosis-Prone Type 2 Diabetes in Patients of Sub-Saharan African Origin: Clinical Pathophysiology and Natural History of Â-Cell Dysfunction and Insulin Resistance. Diabetes, 2004, 53, 645-653.	0.3	254
116	Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet, The, 2003, 361, 1861-1865.	6.3	258
117	Clucose Response to Intense Aerobic Exercise in Type 1 Diabetes: Maintenance of near euglycemia despite a drastic decrease in insulin dose. Diabetes Care, 2003, 26, 1316-1317.	4.3	49
118	Knockout models are useful tools to dissect the pathophysiology and genetics of insulin resistance. Clinical Endocrinology, 2002, 57, 1-9.	1.2	75
119	Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Journal of Clinical Investigation, 2002, 109, 141-149.	3.9	124
120	Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nature Medicine, 2000, 6, 924-928.	15.2	624
121	Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85î±. Nature Genetics, 2000, 26, 379-382.	9.4	273
122	Positive and Negative Regulation of Phosphoinositide 3-Kinase-Dependent Signaling Pathways by Three Different Gene Products of the p851± Regulatory Subunit. Molecular and Cellular Biology, 2000, 20, 8035-8046.	1.1	8
123	Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. Journal of Clinical Investigation, 2000, 105, 1791-1797.	3.9	283
124	PI 3-KINASE KNOCKOUT MICE: ROLE OF p $85\hat{1}$ ± IN B CELL DEVELOPMENT AND PROLIFERATION. Biochemical Society Transactions, 1999, 27, A73-A73.	1.6	0
125	Identification of the Rat Adapter Grb14 as an Inhibitor of Insulin Actions. Journal of Biological Chemistry, 1998, 273, 26026-26035.	1.6	92
126	The combination of conjugated equine estrogens with bazedoxifene prevents streptozotocin-induced diabetes in female mice. Matters, 0, , .	1.0	3