List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2812885/publications.pdf Version: 2024-02-01

		50170	40881
95	12,743	46	93
papers	citations	h-index	g-index
113	113	113	21964
all docs	docs citations	times ranked	citing authors

DALLI DICARD

#	Article	lF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot. Cell, 1989, 57, 537-547.	13.5	669
3	IFITM3 restricts the morbidity and mortality associated with influenza. Nature, 2012, 484, 519-523.	13.7	668
4	An Overlapping Protein-Coding Region in Influenza A Virus Segment 3 Modulates the Host Response. Science, 2012, 337, 199-204.	6.0	543
5	The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of General Virology, 2002, 83, 723-734.	1.3	418
6	A Complicated Message: Identification of a Novel PB1-Related Protein Translated from Influenza A Virus Segment 2 mRNA. Journal of Virology, 2009, 83, 8021-8031.	1.5	318
7	Genome packaging in influenza A virus. Journal of General Virology, 2010, 91, 313-328.	1.3	253
8	Interaction of the Influenza Virus Nucleoprotein with the Cellular CRM1-Mediated Nuclear Export Pathway. Journal of Virology, 2001, 75, 408-419.	1.5	243
9	A LC3-Interacting Motif in the Influenza A Virus M2 Protein Is Required to Subvert Autophagy and Maintain Virion Stability. Cell Host and Microbe, 2014, 15, 239-247.	5.1	207
10	A Rab11- and Microtubule-Dependent Mechanism for Cytoplasmic Transport of Influenza A Virus Viral RNA. Journal of Virology, 2011, 85, 4143-4156.	1.5	193
11	Identification of a Novel Splice Variant Form of the Influenza A Virus M2 Ion Channel with an Antigenically Distinct Ectodomain. PLoS Pathogens, 2012, 8, e1002998.	2.1	187
12	The Rab11 Pathway Is Required for Influenza A Virus Budding and Filament Formation. Journal of Virology, 2010, 84, 5848-5859.	1.5	175
13	Dynamics of Influenza Virus Infection and Pathology. Journal of Virology, 2010, 84, 3974-3983.	1.5	172
14	Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Research, 2007, 35, 1897-1907.	6.5	165
15	Mutational Analysis of <i>cis</i> -Acting RNA Signals in Segment 7 of Influenza A Virus. Journal of Virology, 2008, 82, 11869-11879.	1.5	138
16	A brief history of bird flu. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180257.	1.8	137
17	Human Î ³ δT Cells: A Lymphoid Lineage Cell Capable of Professional Phagocytosis. Journal of Immunology, 2009, 183, 5622-5629.	0.4	136
18	Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nature Communications, 2020, 11, 164.	5.8	136

#	Article	IF	CITATIONS
19	Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. Journal of General Virology, 2007, 88, 2280-2290.	1.3	133
20	A Functional Link between the Actin Cytoskeleton and Lipid Rafts during Budding of Filamentous Influenza Virions. Virology, 2002, 301, 212-225.	1.1	121
21	Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6247-6252.	3.3	114
22	Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology, 2004, 321, 120-133.	1.1	112
23	Modulation of Nuclear Localization of the Influenza Virus Nucleoprotein through Interaction with Actin Filaments. Journal of Virology, 1999, 73, 2222-2231.	1.5	111
24	Evolutionary Conservation of the PA-X Open Reading Frame in Segment 3 of Influenza A Virus. Journal of Virology, 2012, 86, 12411-12413.	1,5	104
25	Identification of Amino Acid Residues of Influenza Virus Nucleoprotein Essential for RNA Binding. Journal of Virology, 1999, 73, 7357-7367.	1.5	96
26	A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance. BMC Genomics, 2015, 16, 574.	1.2	92
27	Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection. ELife, 2016, 5, e12735.	2.8	86
28	Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes. Virology, 1989, 171, 162-169.	1.1	78
29	Survival of Influenza A(H1N1) on Materials Found in Households: Implications for Infection Control. PLoS ONE, 2011, 6, e27932.	1.1	77
30	Oligomerization of the Influenza Virus Nucleoprotein: Identification of Positive and Negative Sequence Elements. Virology, 1999, 260, 190-200.	1.1	76
31	Quantitative Proteomics Using SILAC Coupled to LCâ ^{~,} MS/MS Reveals Changes in the Nucleolar Proteome in Influenza A Virus-Infected Cells. Journal of Proteome Research, 2010, 9, 5335-5345.	1.8	76
32	Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. Journal of General Virology, 2010, 91, 1290-1301.	1.3	75
33	Lipid Raft-Dependent Targeting of the Influenza A Virus Nucleoprotein to the Apical Plasma Membrane. Traffic, 2004, 5, 979-992.	1.3	71
34	Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase. Nucleic Acids Research, 2002, 30, 429-438.	6.5	69
35	Nuclear Export of Influenza A Virus mRNAs Requires Ongoing RNA Polymerase II Activity. Traffic, 2007, 8, 1-11.	1.3	68
36	Overlapping signals for translational regulation and packaging of influenza A virus segment 2. Nucleic Acids Research, 2011, 39, 7775-7790.	6.5	66

#	Article	IF	CITATIONS
37	Interactome Analysis of the Human Respiratory Syncytial Virus RNA Polymerase Complex Identifies Protein Chaperones as Important Cofactors That Promote L-Protein Stability and RNA Synthesis. Journal of Virology, 2015, 89, 917-930.	1.5	65
38	Characterisation of influenza A viruses with mutations in segment 5 packaging signals. Vaccine, 2009, 27, 6270-6275.	1.7	57
39	The PB2-E627K Mutation Attenuates Viruses Containing the 2009 H1N1 Influenza Pandemic Polymerase. MBio, 2010, 1, .	1.8	57
40	Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes. Proteomics, 2012, 12, 666-672.	1.3	57
41	Temperature sensitive influenza A virus genome replication results from low thermal stability of polymerase-cRNA complexes. Virology Journal, 2006, 3, 58.	1.4	56
42	Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway. Virology, 2009, 390, 268-278.	1.1	55
43	Temperature-Sensitive Lesions in Two Influenza A Viruses Defective for Replicative Transcription Disrupt RNA Binding by the Nucleoprotein. Journal of Virology, 1999, 73, 7349-7356.	1.5	54
44	Detection of influenza C virus but not influenza D virus in Scottish respiratory samples. Journal of Clinical Virology, 2016, 74, 50-53.	1.6	51
45	Influenza — Time to Target the Host?. New England Journal of Medicine, 2013, 369, 191-193.	13.9	50
46	Nucleozin Targets Cytoplasmic Trafficking of Viral Ribonucleoprotein-Rab11 Complexes in Influenza A Virus Infection. Journal of Virology, 2013, 87, 4694-4703.	1.5	49
47	Influence of PB2 host-range determinants on the intranuclear mobility of the influenza A virus polymerase. Journal of General Virology, 2011, 92, 1650-1661.	1.3	48
48	Activation of influenza virus RNA polymerase by the 5' and 3' terminal duplex of genomic RNA. Nucleic Acids Research, 2003, 31, 1624-1632.	6.5	47
49	Increased amounts of the influenza virus nucleoprotein do not promote higher levels of viral genome replication. Journal of General Virology, 2004, 85, 3689-3698.	1.3	46
50	Effectiveness of Common Household Cleaning Agents in Reducing the Viability of Human Influenza A/H1N1. PLoS ONE, 2010, 5, e8987.	1.1	39
51	A quantitative proteomic analysis of lung epithelial (A549) cells infected with 2009 pandemic influenza A virus using stable isotope labelling with amino acids in cell culture. Proteomics, 2012, 12, 1431-1436.	1.3	39
52	Human Cytomegalovirus Inhibitor AL18 Also Possesses Activity against Influenza A and B Viruses. Antimicrobial Agents and Chemotherapy, 2012, 56, 6009-6013.	1.4	38
53	Role of the Rab11 pathway in negative-strand virus assembly. Biochemical Society Transactions, 2012, 40, 1409-1415.	1.6	38
54	Studies of an Influenza A Virus Temperature-Sensitive Mutant Identify a Late Role for NP in the Formation of Infectious Virions. Journal of Virology, 2009, 83, 562-571.	1.5	37

PAUL DIGARD

#	Article	IF	CITATIONS
55	Modelling the Structure and Dynamics of Biological Pathways. PLoS Biology, 2016, 14, e1002530.	2.6	37
56	Nuclear dynamics of influenza A virus ribonucleoproteins revealed by live-cell imaging studies. Virology, 2009, 394, 154-163.	1.1	36
57	Vaccinia Virus Uses Retromer-Independent Cellular Retrograde Transport Pathways To Facilitate the Wrapping of Intracellular Mature Virions during Virus Morphogenesis. Journal of Virology, 2016, 90, 10120-10132.	1.5	33
58	A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnology, 2018, 18, 82.	1.7	33
59	Intra-genome variability in the dinucleotide composition of SARS-CoV-2. Virus Evolution, 2020, 6, veaa057.	2.2	33
60	Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell, 2020, 181, 1502-1517.e23.	13.5	33
61	Influenza A virus and the cell nucleus. Vaccine, 2006, 24, 6651-6655.	1.7	32
62	The environmental deposition of influenza virus from patients infected with influenza A(H1N1)pdm09: Implications for infection prevention and control. Journal of Infection and Public Health, 2016, 9, 278-288.	1.9	32
63	Evidence that the Câ€terminal PB2â€binding region of the influenza A virus PB1 protein is a discrete αâ€helical domain. FEBS Letters, 2007, 581, 5300-5306.	1.3	31
64	Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA. Journal of Virology, 2017, 91, .	1.5	31
65	â€~Genome gating'; polarized intranuclear trafficking of influenza virus RNPs. Biology Letters, 2005, 1, 113-117.	1.0	27
66	Release of filamentous and spherical influenza A virus is not restricted by tetherin. Journal of General Virology, 2012, 93, 963-969.	1.3	26
67	Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity. Journal of Virology, 2016, 90, 9263-9284.	1.5	26
68	PA-X antagonises MAVS-dependent accumulation of early type I interferon messenger RNAs during influenza A virus infection. Scientific Reports, 2019, 9, 7216.	1.6	25
69	Secondary Structure and Structure-Activity Relationships of Peptides Corresponding to the Subunit Interface of Herpes Simplex Virus DNA Polymerase. Journal of Biological Chemistry, 2000, 275, 472-478.	1.6	23
70	STING nuclear partners contribute to innate immune signaling responses. IScience, 2021, 24, 103055.	1.9	22
71	Expression of HIV-1 Vpu Leads to Loss of the Viral Restriction Factor CD317/Tetherin from Lipid Rafts and Its Enhanced Lysosomal Degradation. PLoS ONE, 2013, 8, e75680.	1.1	18
72	Permissive and restricted virus infection of murine embryonic stem cells. Journal of General Virology, 2012, 93, 2118-2130.	1.3	18

PAUL DIGARD

#	Article	IF	CITATIONS
73	Mutation of Influenza A Virus PA-X Decreases Pathogenicity in Chicken Embryos and Can Increase the Yield of Reassortant Candidate Vaccine Viruses. Journal of Virology, 2019, 93, .	1.5	17
74	Staphylococcus aureus Lipase 1 Enhances Influenza A Virus Replication. MBio, 2020, 11, .	1.8	16
75	Packaging signals in the 5′-ends of influenza virus PA, PB1, and PB2 genes as potential targets to develop nucleic-acid based antiviral molecules. Antiviral Research, 2011, 92, 64-72.	1.9	15
76	The genetics of virus particle shape in equine influenza <scp>A</scp> virus. Influenza and Other Respiratory Viruses, 2013, 7, 81-89.	1.5	15
77	Contribution of Segment 3 to the Acquisition of Virulence in Contemporary H9N2 Avian Influenza Viruses. Journal of Virology, 2020, 94, .	1.5	15
78	Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences. Journal of Virology, 2020, 94, .	1.5	14
79	Compositional biases in <scp>RNA</scp> viruses: Causes, consequences and applications. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1679.	3.2	14
80	Characterization of the Interactome of the Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the Hyper Variable Region as a Binding Platform for Association with 14–3–3 Proteins. Journal of Proteome Research, 2016, 15, 1388-1401.	1.8	13
81	Asparagine Deprivation Causes a Reversible Inhibition of Human Cytomegalovirus Acute Virus Replication. MBio, 2019, 10, .	1.8	12
82	Accessory Gene Products of Influenza A Virus. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038380.	2.9	12
83	The cellular localization of avian influenza virus PB1-F2 protein alters the magnitude of IFN2 promoter and NFI®B-dependent promoter antagonism in chicken cells. Journal of General Virology, 2019, 100, 414-430.	1.3	12
84	Engineered Recombinant Single Chain Variable Fragment of Monoclonal Antibody Provides Protection to Chickens Infected with H9N2 Avian Influenza. Vaccines, 2020, 8, 118.	2.1	11
85	TRIM25 inhibits influenza A virus infection, destabilizes viral mRNA, but is redundant for activating the RIG-I pathway. Nucleic Acids Research, 2022, 50, 7097-7114.	6.5	11
86	Using Species a Rotavirus Reverse Genetics to Engineer Chimeric Viruses Expressing SARS-CoV-2 Spike Epitopes. Journal of Virology, 2022, 96, .	1.5	10
87	Effects of mutations in the effector domain of influenza A virus NS1 protein. BMC Research Notes, 2018, 11, 673.	0.6	9
88	Constitutive TRIM22 Expression in the Respiratory Tract Confers a Pre-Existing Defence Against Influenza A Virus Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 689707.	1.8	6
89	PA-X is an avian virulence factor in H9N2 avian influenza virus. Journal of General Virology, 2021, 102, .	1.3	5
90	Segment 2 from influenza A(H1N1) 2009 pandemic viruses confers temperature-sensitive haemagglutinin yield on candidate vaccine virus growth in eggs that can be epistatically complemented by PB2 701D. Journal of General Virology, 2019, 100, 1079-1092.	1.3	5

#	Article	IF	CITATIONS
91	Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses, 2021, 13, 2323.	1.5	5
92	Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model. PLoS ONE, 2018, 13, e0191739.	1.1	3
93	Interaction of the influenza virus nucleoprotein with F-actin. International Congress Series, 2001, 1219, 503-512.	0.2	1
94	Orthomyxovirus Genome Transcription and Replication. , 2009, , 163-180.		1
95	The role of a LC3 interacting region motif in influenza M2. Lancet, The, 2014, 383, S24.	6.3	0