Tatiana P Maslennikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2812802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Express Al/Fe oxide–oxyhydroxide sorbent systems for Cr(VI) removal from aqueous solutions. Chemical Engineering Journal, 2018, 350, 344-355.	6.6	48
2	Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation. Russian Journal of General Chemistry, 2010, 80, 1136-1142.	0.3	25
3	Hydrothermal synthesis, characterization and sorption properties of Al/Fe oxide–oxyhydroxide composite powders. Advanced Powder Technology, 2016, 27, 756-764.	2.0	21
4	Influence of the physicochemical parameters of synthesis on the growth of nanotubes of the Mg3Si2O5(OH)4 composition under hydrothermal conditions. Glass Physics and Chemistry, 2011, 37, 161-171.	0.2	18
5	Characterization and sorption properties of γ-AlOOH/α-Fe2O3 composite powders prepared via hydrothermal method. Materials Chemistry and Physics, 2017, 186, 612-619.	2.0	16
6	Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. Crystals, 2020, 10, 654.	1.0	16
7	Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems. Russian Journal of Applied Chemistry, 2017, 90 28-33.	0,0.1	14
8	Biocomposite Materials Based on Chitosan and Lignin: Preparation and Characterization. Cosmetics, 2021, 8, 24.	1.5	14
9	Structure and characteristics of chitosan-based fibers containing chrysotile and halloysite. Polymer Science - Series A, 2011, 53, 418-423.	0.4	13
10	Effect of heat treatment on structural-chemical transformations in magnesium hydrosilicate [Mg3Si2O5(OH)4] nanotubes. Russian Journal of Applied Chemistry, 2009, 82, 2079-2086.	0.1	12
11	Synthesis, mutual solubility, and thermal behavior of nanocrystals in the LaPO4-YPO4-H2O system. Glass Physics and Chemistry, 2010, 36, 351-357.	0.2	11
12	Regularities of the filling of Mg3Si2O5(OH)4 hydrosilicate nanotubes with solutions of sodium hydroxide and sodium chloride. Glass Physics and Chemistry, 2011, 37, 418-425.	0.2	11
13	Sol–gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions. Journal of Sol-Gel Science and Technology, 2019, 92, 427-441.	1.1	11
14	Comparative Study of Powders Based on the ZrO2–Y2O3â€"Đ¡eO2 System Obtained by Various Liquid Phase Methods of Synthesis. Glass Physics and Chemistry, 2018, 44, 433-439.	0.2	10
15	Interaction between water and the composite materials based on chitosan and chitin nanofibrils. Polymer, 2020, 189, 122166.	1.8	10
16	Influence of synthesis of physicochemical parameters on growth of Ni3Si2O5(OH)4 nanotubes and their filling with solutions of hydroxides and chlorides of alkaline metals. Glass Physics and Chemistry, 2013, 39, 67-72.	0.2	9
17	Chemical and thermal stability of phosphate ceramic matrices. Class Physics and Chemistry, 2017, 43, 83-90.	0.2	9
18	Hydrothermal Synthesis of Ti-Doped Nickel Hydrosilicates of Various Morphologies. Russian Journal	0.1	9

of Applied Chemistry, 2018, 91, 286-291.

#	Article	IF	CITATIONS
19	Effect of Chitin Nanofibrils on the Sorption Behavior of Chitosan-Based Composite Films. Polymer Science - Series A, 2020, 62, 205-212.	0.4	9
20	The synthesis and thermochemical study of (Mg,Fe)3Si2O5(OH)4 nanotubes. Russian Journal of Physical Chemistry A, 2010, 84, 44-47.	0.1	7
21	Aqueous solutions of cesium salts and cesium hydroxide in hydrosilicate nanotubes of the Mg3Si2O5(OH)4 composition. Glass Physics and Chemistry, 2010, 36, 345-350.	0.2	7
22	Materials based on aluminum and iron oxides obtained by the hydrothermal method. Glass Physics and Chemistry, 2014, 40, 650-656.	0.2	7
23	Sorption of lead(II) ions and water vapors by synthetic hydro- and aluminosilicates with layered, framework, and nanotube morphology. Glass Physics and Chemistry, 2014, 40, 250-255.	0.2	7
24	Synthetic hydrosilicate nanotubes induce low proâ€inflammatory and cytotoxic responses compared to natural chrysotile in lung cell cultures. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 374-388.	1.2	7
25	Effect of the Method of Synthesis on the Photocatalytic and Sorption Properties for Potassium Polytitanates Doped with Di- and Trivalent Metal Ions. Russian Journal of Inorganic Chemistry, 2020, 65, 1127-1134.	0.3	7
26	On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite. Nanosystems: Physics, Chemistry, Mathematics, 2018, , 410-416.	0.2	7
27	Morphology and mechanical properties of polymer-inorganic nanocomposite containing triple chain fibrous Na-Mg hydrosilicate. Russian Journal of General Chemistry, 2015, 85, 1496-1505.	0.3	6
28	Interaction of potassium chloride aqueous solution Mg3Si2O5(OH)4 with the nanotubes based on magnesium hydrosilicate. Russian Journal of Applied Chemistry, 2009, 82, 352-355.	0.1	5
29	Interacton of chrisotyl nanotubes with water-alcohol solutons at different temperature-time parameters. Glass Physics and Chemistry, 2012, 38, 122-130.	0.2	5
30	Mechanism of formation of titanium dioxide crystallites in the reaction of titanium tetrachloride with magnesium hydrosilicate nanotubes. Materials Today Chemistry, 2019, 11, 156-168.	1.7	5
31	Interaction of Mg3Si2O5(OH)4 nanotubes with potassium hydroxide. Russian Journal of Applied Chemistry, 2008, 81, 375-379.	0.1	4
32	Effect of carbon nanostructures on the carbonization of polyacrylonitrile. Russian Journal of Applied Chemistry, 2013, 86, 1410-1416.	0.1	4
33	Temperature factor in interaction of nanotubular magnesium hydrosilicate, Mg3Si2O5(OH)4, with titanium tetrachloride and water vapors. Russian Journal of Applied Chemistry, 2014, 87, 151-159.	0.1	4
34	Synthesis and growth of nanotubes Mg3Si2O5(OH,F)4 composition under hydrothermal conditions. Glass Physics and Chemistry, 2013, 39, 294-300.	0.2	3
35	Effect of temperature on the synthesis of nanoparticles with different morphology in the system MgO–SiO2–TiO2–H2O under hydrothermal conditions. Glass Physics and Chemistry, 2016, 42, 627-630. 	0.2	3
36	Modification of Mg3Si2O5(OH)4 nanotubes by magnetite nanoparticles. Glass Physics and Chemistry, 2017, 43, 257-262.	0.2	3

#	Article	IF	CITATIONS
37	Sol-Gel Synthesis, Thermal Behavior of Nanopowders and Chemical Stability of La1 – xHoxPO4 Ceramic Matrices. Glass Physics and Chemistry, 2018, 44, 440-449.	0.2	3
38	Sorption of Strontium lons on Potassium-Titanate Nanoparticles of Various Morphology Obtained under Hydrothermal Conditions. Russian Journal of Applied Chemistry, 2019, 92, 549-554.	0.1	3
39	Aromatic polyamidoimides modified with hydrosilicate nanoparticles of different structure and morphology for membrane technologies. Class Physics and Chemistry, 2017, 43, 181-184.	0.2	2
40	Physicochemical Properties of Nanosized Powders of the LaPO4–DyPO4–H2O System. Glass Physics and Chemistry, 2018, 44, 423-427.	0.2	2
41	Electrooptical properties of aqueous suspensions of nickel hydrosilicate nanotubes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 112, 64-71.	0.2	1
42	Thermochemical modification of Mg3Si2O5(OH)4 hydrosilicate nanotubes by silver nitrate solutions. Glass Physics and Chemistry, 2016, 42, 288-294.	0.2	1
43	Hydrothermal synthesis of potassium titanate nanotubes doped with magnesium, nickel, and aluminum. Russian Journal of Applied Chemistry, 2017, 90, 193-197.	0.1	1
44	Synthesis and Investigation of the Catalytic Activity of Nanostructured Potassium Titanates Doped by Ni, Mg, Al, Fe, and Cr. Glass Physics and Chemistry, 2018, 44, 329-332.	0.2	1
45	Formation of Anisotropic Hydroxyapatite Particles under Hydrothermal Conditions. Russian Journal of Applied Chemistry, 2020, 93, 633-638.	0.1	1
46	Analysis of the surface morphology, structure and properties of polyamidoimide nanocomposites with tubular hydrosilicates. Journal of Surface Investigation, 2017, 11, 1022-1032.	0.1	0