
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2812184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromium(VI) Removal from Water by Lanthanum Hybrid Modified Activated Carbon Produced from Coconut Shells. Nanomaterials, 2022, 12, 1067.	4.1	16
2	Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. Sustainability, 2022, 14, 5222.	3.2	14
3	Innovative Approaches for Drinking- and Waste-Water Treatment: An Editorial Review Summarizing and Assessing the Findings of the Special Issue. Applied Sciences (Switzerland), 2021, 11, 2063.	2.5	2
4	Nanomaterials in Cementitious Composites: An Update. Molecules, 2021, 26, 1430.	3.8	38
5	Barium/Cobalt@Polyethylene Glycol Nanocomposites for Dye Removal from Aqueous Solutions. Polymers, 2021, 13, 1161.	4.5	21
6	Extraction and Purification of Phosphorus from the Ashes of Incinerated Biological Sewage Sludge. Water (Switzerland), 2021, 13, 1102.	2.7	6
7	Recently Developed Adsorbing Materials for Fluoride Removal from Water and Fluoride Analytical Determination Techniques: A Review. Sustainability, 2021, 13, 7061.	3.2	22
8	Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: Surface chemistry matters the most. Journal of Hazardous Materials, 2021, 413, 125279.	12.4	76
9	Enhancement of Methanogenic Activity in Volumetrically Undersized Reactor by Mesophilic Co-Digestion of Sewage Sludge and Aqueous Residue. Sustainability, 2021, 13, 7728.	3.2	4
10	Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings. International Journal of Environmental Research and Public Health, 2021, 18, 10326.	2.6	8
11	Innovative aspects of environmental chemistry and technology regarding air, water, and soil pollution. Environmental Science and Pollution Research, 2021, 28, 58958-58968.	5.3	3
12	Activated Carbons for Arsenic Removal from Natural Waters and Wastewaters: A Review. Water (Switzerland), 2021, 13, 2982.	2.7	18
13	A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water. Journal of Carbon Research, 2021, 7, 74.	2.7	6
14	EVALUATING GLOBAL MUNICIPAL SOLID WASTE MANAGEMENT EFFICIENCY FROM A CIRCULAR ECONOMY POINT OF VIEW. WIT Transactions on Ecology and the Environment, 2021, , .	0.0	8
15	Graphene Oxide/Fe-Based Composite Pre-Polymerized Coagulants: Synthesis, Characterization, and Potential Application in Water Treatment. Journal of Carbon Research, 2020, 6, 44.	2.7	7
16	Simultaneous Removal of Arsenate and Chromate from Ground- and Surface- Waters by Iron-Based Redox Assisted Coagulation. Sustainability, 2020, 12, 5394.	3.2	11
17	Application of Composite Pre-Polymerized Coagulants for the Treatment of High-Strength Industrial Wastewaters. Water (Switzerland), 2020, 12, 1258.	2.7	17
18	Second-Hand Smoke Exposure Effects on Human Health: Evaluation of PM10 Concentrations in the External Areas of a University Campus. Sustainability, 2020, 12, 2948.	3.2	5

#	Article	IF	CITATIONS
19	Mathematical modeling of arsenic(V) adsorption onto iron oxyhydroxides in an adsorption-submerged membrane hybrid system. Journal of Hazardous Materials, 2020, 400, 123221.	12.4	38
20	Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Applied Sciences (Switzerland), 2020, 10, 3241.	2.5	36
21	Cr(VI) Femoval from Ground Waters by Ferrous Iron Redox-Assisted Coagulation in a Continuous Treatment Unit Comprising a Plug Flow Pipe Reactor and Downflow Sand Filtration. Applied Sciences (Switzerland), 2020, 10, 802.	2.5	11
22	Fluoride removal from water by composite Al/Fe/Si/Mg pre-polymerized coagulants: Characterization and application. Chemosphere, 2019, 231, 528-537.	8.2	42
23	Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations. Water (Switzerland), 2019, 11, 45.	2.7	7
24	Sustainable environmental chemistry and technology with focus on the Mediterranean area. Environmental Science and Pollution Research, 2018, 25, 12189-12190.	5.3	0
25	Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan. Environmental Science and Pollution Research, 2018, 25, 12234-12245.	5.3	10
26	Reductive precipitation and removal of Cr(VI) from groundwaters by pipe flocculation-microfiltration. Environmental Science and Pollution Research, 2018, 25, 12256-12262.	5.3	35
27	Impact of O3 or O3/H2O2 treatment via a membrane contacting system on the composition and characteristics of the natural organic matter of surface waters. Environmental Science and Pollution Research, 2018, 25, 12246-12255.	5.3	10
28	Fate of Cr(III) during Ozonation of Secondary Municipal Wastewater Effluent. Ozone: Science and Engineering, 2018, 40, 441-447.	2.5	6
29	Application of a ceramic membrane contacting process for ozone and peroxone treatment of micropollutant contaminated surface water. Journal of Hazardous Materials, 2018, 358, 129-135.	12.4	34
30	Critical Review of the Effects of Glyphosate Exposure to the Environment and Humans through the Food Supply Chain. Sustainability, 2018, 10, 950.	3.2	80
31	Consumption of Free Chlorine in an Aqueduct Scheme with Low Protection: Case Study of the New Aqueduct Simbrivio-Castelli (NASC), Italy. Water (Switzerland), 2018, 10, 127.	2.7	2
32	Wastewater Treatment in Membrane Bioreactors: The Use of Polyelectrolytes to Control Membrane Fouling. Environmental Processes, 2017, 4, 9-21.	3.5	6
33	Batch and continuous dosing of conventional and composite coagulation agents for fouling control in a pilot-scale MBR. Chemical Engineering Journal, 2017, 311, 255-264.	12.7	33
34	Arsenic Removal from Drinking Water: Experiences with Technologies and Constraints in Practice. Journal of Environmental Engineering, ASCE, 2017, 143, .	1.4	74
35	Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent. Journal of Environmental Management, 2017, 190, 132-139.	7.8	26
36	Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere, 2017, 168, 1004-1012.	8.2	85

#	Article	IF	CITATIONS
37	Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environmental Geochemistry and Health, 2017, 39, 847-863.	3.4	56
38	Novel and Conventional Technologies for Landfill Leachates Treatment: A Review. Sustainability, 2017, 9, 9.	3.2	127
39	Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits. Sustainability, 2017, 9, 238.	3.2	20
40	Use of Novel Composite Coagulants for Arsenic Removal from Waters—Experimental Insight for the Application of Polyferric Sulfate (PFS). Sustainability, 2017, 9, 590.	3.2	20
41	Sulfate Radical Technologies as Tertiary Treatment for the Removal of Emerging Contaminants from Wastewater. Sustainability, 2017, 9, 1604.	3.2	108
42	Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides. Sustainability, 2017, 9, 1684.	3.2	53
43	Phosphate Removal from Effluent of Secondary Wastewater Treatment: Characterization of Recovered Precipitates and Potential Re-use as Fertilizer. Waste and Biomass Valorization, 2016, 7, 851-860.	3.4	9
44	Human lead (Pb) exposure via dust from different land use settings of Pakistan: A case study from two urban mountainous cities. Chemosphere, 2016, 155, 259-265.	8.2	46
45	Pilot-Scale Phosphate Recovery from Secondary Wastewater Effluents. Environmental Processes, 2016, 3, 5-22.	3.5	25
46	Effect of climate change in WWTPs with a focus on MBR infrastructure. Desalination and Water Treatment, 2016, 57, 2344-2354.	1.0	17
47	Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants. Journal of Chemistry, 2015, 2015, 1-12.	1.9	27
48	Arsenic levels from different land-use settings in Pakistan: Bio-accumulation and estimation of potential human health risk via dust exposure. Ecotoxicology and Environmental Safety, 2015, 115, 187-194.	6.0	33
49	Synthesis and coagulation performance of composite poly-aluminum-ferric-silicate-chloride coagulants in water and wastewater. Desalination and Water Treatment, 2015, 53, 3309-3318.	1.0	24
50	Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values. Journal of Hazardous Materials, 2015, 297, 1-7.	12.4	49
51	Effect of Climate Change in Wastewater Treatment Plants: Reviewing the Problems and Solutions. Springer Water, 2015, , 197-220.	0.3	15
52	Arsenic occurrence in Europe: emphasis in Greece and description of the applied full-scale treatment plants. Desalination and Water Treatment, 2015, 54, 2100-2107.	1.0	69
53	The Incorporation of Ceramic Membranes in MBR Systems for Wastewater Treatment: Advantages and Patented New Developments. Recent Patents on Engineering, 2014, 8, 24-32.	0.4	16
54	Review of Recent Patents on Coagulation / Flocculation (C/F) Process: Methods and Applications with Emphasis on Phosphates Removal. Recent Patents on Materials Science, 2014, 7, 151-163.	0.5	3

#	Article	IF	CITATIONS
55	Response to Comment on "pH Dependence of Fenton Reagent Generation and As(III) Oxidation and Removal by Corrosion of Zero Valent Iron in Aerated Water― Environmental Science & Technology, 2009, 43, 3980-3981.	10.0	11
56	Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2007, 139, 31-37.	12.4	75
57	Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 2007, 383, 128-140.	8.0	118
58	Comparative Evaluation of Conventional and Alternative Methods for the Removal of Arsenic from Contaminated Groundwaters. Reviews on Environmental Health, 2006, 21, 25-41.	2.4	37
59	The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides. Water Research, 2006, 40, 3646-3652.	11.3	61
60	Use of Iron- and Manganese-Oxidizing Bacteria for the Combined Removal of Iron, Manganese and Arsenic from Contaminated Groundwater. Water Quality Research Journal of Canada, 2006, 41, 117-129.	2.7	59
61	Application of biological processes for the removal of arsenic from groundwaters. Water Research, 2004, 38, 17-26.	11.3	331
62	Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Water Research, 2004, 38, 1922-1932.	11.3	219
63	Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Research, 2002, 36, 5141-5155.	11.3	398
64	Arsenic Removal Using Iron Oxide Loaded Alginate Beads. Industrial & Engineering Chemistry Research, 2002, 41, 6149-6155.	3.7	178