Brian D Polizzotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2812018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A microfluidic device for real-time on-demand intravenous oxygen delivery. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115276119.	7.1	5
2	Using design of experiments to understand and predict polymer microcapsule <scp>coreâ€shell</scp> architecture. Journal of Applied Polymer Science, 2021, 138, 50100.	2.6	3
3	Engineering Caged Microbubbles for Controlled Acoustic Cavitation and Pressure Sensing. , 2021, 3, 978-987.		5
4	Hyperbaric polymer microcapsules for tunable oxygen delivery. Journal of Controlled Release, 2020, 327, 420-428.	9.9	10
5	Changes in tissue oxygen tension, venous saturation, and Fickâ€based assessments of cardiac output during hyperoxia. Acta Anaesthesiologica Scandinavica, 2019, 63, 93-100.	1.6	8
6	Perioperatively Inhaled Hydrogen Gas Diminishes Neurologic Injury Following Experimental Circulatory Arrest in Swine. JACC Basic To Translational Science, 2019, 4, 176-187.	4.1	15
7	Tunable Nonlinear Acoustic Reporters Using Micro- and Nanosized Air Bubbles with Porous Polymeric Hard Shells. ACS Applied Materials & Interfaces, 2019, 11, 7-12.	8.0	11
8	Intravenous Amiodarone and Sotalol Impair Contractility and Cardiac Output, but Procainamide Does Not: A Langendorff Study. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 288-297.	2.0	10
9	Safety of inhaled hydrogen gas in healthy mice. Medical Gas Research, 2019, 9, 133.	2.3	15
10	Interfacial Nanoprecipitation toward Stable and Responsive Microbubbles and Their Use as a Resuscitative Fluid. Angewandte Chemie, 2018, 130, 1285-1290.	2.0	6
11	Use of Oxyhemoglobin Saturation or Oxygen Tension—an Unsolved Question—Reply. JAMA Pediatrics, 2018, 172, 390.	6.2	0
12	Innentitelbild: Interfacial Nanoprecipitation toward Stable and Responsive Microbubbles and Their Use as a Resuscitative Fluid (Angew. Chem. 5/2018). Angewandte Chemie, 2018, 130, 1134-1134.	2.0	0
13	Interfacial Nanoprecipitation toward Stable and Responsive Microbubbles and Their Use as a Resuscitative Fluid. Angewandte Chemie - International Edition, 2018, 57, 1271-1276.	13.8	24
14	Frontispiece: Injectable Oxygen: Interfacing Materials Chemistry with Resuscitative Science. Chemistry - A European Journal, 2018, 24, .	3.3	0
15	Injectable Oxygen: Interfacing Materials Chemistry with Resuscitative Science. Chemistry - A European Journal, 2018, 24, 18820-18829.	3.3	7
16	Tunable Polymer Microcapsules for Controlled Release of Therapeutic Gases. Langmuir, 2018, 34, 9175-9183.	3.5	9
17	A Device for the Quantification of Oxygen Consumption and Caloric Expenditure in the Neonatal Range. Anesthesia and Analgesia, 2018, 127, 95-104.	2.2	1
18	Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation. Scientific Reports, 2017, 7, 8362.	3.3	32

BRIAN D POLIZZOTTI

#	Article	IF	CITATIONS
19	Use of Oxyhemoglobin Saturation, Rather Than Oxygen Tension, as a Marker of Oxygenation in Cyanotic Patients. JAMA Pediatrics, 2017, 171, 1012.	6.2	3
20	Responsive monitoring of mitochondrial redox states in heart muscle predicts impending cardiac arrest. Science Translational Medicine, 2017, 9, .	12.4	27
21	Hemodynamic Effects of Lipid-Based Oxygen Microbubbles via Rapid Intravenous Injection in Rodents. Pharmaceutical Research, 2017, 34, 2156-2162.	3.5	15
22	Reply to Span et al.: Rational design of oxygen microparticles for radiation therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8010-E8010.	7.1	1
23	Oxygen delivery using engineered microparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12380-12385.	7.1	52
24	Freeze-thawing at point-of-use to extend shelf stability of lipid-based oxygen microbubbles for intravenous oxygen delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500, 72-78.	4.7	7
25	A cryoinjury model in neonatal mice for cardiac translational and regeneration research. Nature Protocols, 2016, 11, 542-552.	12.0	42
26	Neuregulin-1 Administration Protocols Sufficient for Stimulating Cardiac Regeneration in Young Mice Do Not Induce Somatic, Organ, or Neoplastic Growth. PLoS ONE, 2016, 11, e0155456.	2.5	17
27	Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Science Translational Medicine, 2015, 7, 281ra45.	12.4	189
28	Optimization and characterization of stable lipidâ€based, oxygenâ€filled microbubbles by mixture design. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1148-1156.	3.4	17
29	Manufacture of Concentrated, Lipid-based Oxygen Microbubble Emulsions by High Shear Homogenization and Serial Concentration. Journal of Visualized Experiments, 2014, , .	0.3	8
30	Bulk Manufacture of Concentrated Oxygen Gasâ€Filled Microparticles for Intravenous Oxygen Delivery. Advanced Healthcare Materials, 2013, 2, 1131-1141.	7.6	35
31	Moderate and high amounts of tamoxifen in <i>α-MHC-MerCreMer</i> mice induce a DNA damage response, leading to heart failure and death. DMM Disease Models and Mechanisms, 2013, 6, 1459-69.	2.4	120
32	Intrapericardial Delivery of Gelfoam Enables the Targeted Delivery of Periostin Peptide after Myocardial Infarction by Inducing Fibrin Clot Formation. PLoS ONE, 2012, 7, e36788.	2.5	38