Amanda L Garner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811659/publications.pdf

Version: 2024-02-01

52 papers 1,647

331670 21 h-index 289244 40 g-index

54 all docs

54 docs citations

54 times ranked 2359 citing authors

#	Article	IF	Citations
1	RiPCA: An Assay for the Detection of RNAâ€Protein Interactions in Live Cells. Current Protocols, 2022, 2, e358.	2.9	3
2	A live-cell assay for the detection of pre-microRNA–protein interactions. RSC Chemical Biology, 2021, 2, 241-247.	4.1	7
3	Discovery of Surfactins as Inhibitors of MicroRNA Processing Using Cat-ELCCA. ACS Medicinal Chemistry Letters, 2021, 12, 878-886.	2.8	10
4	RNA: Opening New Doors in Medicinal Chemistry, a Special Issue. ACS Medicinal Chemistry Letters, 2021, 12, 851-853.	2.8	3
5	Nucleosides, Nucleotides and Nucleic Acids as Therapeutics: A Virtual Special Issue. ACS Pharmacology and Translational Science, 2021, 4, 1714-1715.	4.9	3
6	Cyclinâ€dependent kinase 4 inhibits the translational repressor 4Eâ€BP1 to promote capâ€dependent translation during mitosis–G1 transition. FEBS Letters, 2020, 594, 1307-1318.	2.8	2
7	A cell-penetrant lactam-stapled peptide for targeting elF4E protein-protein interactions. European Journal of Medicinal Chemistry, 2020, 205, 112655.	5 . 5	9
8	RNA: Opening New Doors in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 2020, 11, 1659-1660.	2.8	1
9	A Conditionally Fluorescent Peptide Reporter of Secondary Structure Modulation. ChemBioChem, 2019, 20, 40-45.	2.6	4
10	The RNA-binding protein SART3 promotes miR-34a biogenesis and G1 cell cycle arrest in lung cancer cells. Journal of Biological Chemistry, 2019, 294, 17188-17196.	3.4	18
11	Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation. European Journal of Medicinal Chemistry, 2019, 166, 339-350.	5.5	26
12	Click Chemistry-Mediated Complementation Assay for RNA–Protein Interactions. ACS Combinatorial Science, 2019, 21, 522-527.	3.8	7
13	The role of olefin geometry in the activity of hydrocarbon stapled peptides targeting eukaryotic translation initiation factor 4E (eIF4E). Organic and Biomolecular Chemistry, 2019, 17, 6414-6419.	2.8	10
14	A click chemistry assay to identify natural product ligands for pre-microRNAs. Methods in Enzymology, 2019, 623, 85-99.	1.0	2
15	Tetracyclines as Inhibitors of Pre-microRNA Maturation: A Disconnection between RNA Binding and Inhibition. ACS Medicinal Chemistry Letters, 2019, 10, 816-821.	2.8	14
16	Chemoproteomic Profiling Uncovers CDK4-Mediated Phosphorylation of the Translational Suppressor 4E-BP1. Cell Chemical Biology, 2019, 26, 980-990.e8.	5.2	5
17	Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G. Journal of Medicinal Chemistry, 2019, 62, 4967-4978.	6.4	15
18	RNA-targeted drug discovery: moving beyond promiscuous small-molecule scaffolds. Future Medicinal Chemistry, 2019, 11, 2487-2490.	2.3	6

#	Article	IF	CITATIONS
19	cat-ELCCA: catalyzing drug discovery through click chemistry. Chemical Communications, 2018, 54, 6531-6539.	4.1	19
20	Development and Implementation of an HTS-Compatible Assay for the Discovery of Selective Small-Molecule Ligands for Pre-microRNAs. SLAS Discovery, 2018, 23, 47-54.	2.7	29
21	Expansion of cat-ELCCA for the Discovery of Small Molecule Inhibitors of the Pre-let-7–Lin28 RNA–Protein Interaction. ACS Medicinal Chemistry Letters, 2018, 9, 517-521.	2.8	37
22	Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. Topics in Medicinal Chemistry, 2017, , 79-110.	0.8	12
23	High-Throughput Chemical Probing of Full-Length Protein–Protein Interactions. ACS Combinatorial Science, 2017, 19, 763-769.	3.8	14
24	A click chemistry-based microRNA maturation assay optimized for high-throughput screening. Chemical Communications, 2016, 52, 8267-8270.	4.1	30
25	MINCR is not a MYC-induced lncRNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E496-7.	7.1	6
26	High-Throughput Platform Assay Technology for the Discovery of pre-microRNA-Selective Small Molecule Probes. Bioconjugate Chemistry, 2015, 26, 19-23.	3.6	32
27	Inhibitor of MYC identified in a Kr \tilde{A} ¶hnke pyridine library. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12556-12561.	7.1	110
28	Immunomodulation and the quorum sensing molecule 3-oxo-C12-homoserine lactone: the importance of chemical scaffolding for probe development. Chemical Communications, 2013, 49, 1515.	4.1	5
29	Facilitating Cytokine-Mediated Cancer Cell Death by Proteobacterial <i>N</i> -Acylhomoserine Lactones. ACS Chemical Biology, 2013, 8, 1117-1120.	3.4	16
30	Development of a High-Throughput Screen and Its Use in the Discovery of <i>Streptococcus pneumoniae</i> Immunoglobulin A1 Protease Inhibitors. Journal of the American Chemical Society, 2013, 135, 10014-10017.	13.7	15
31	3-Hydroxy-1-alkyl-2-methylpyridine-4($1 < i > H < / i >$)-thiones: Inhibition of the $< i > P$ seudomonas aeruginosa $< / i >$ Virulence Factor LasB. ACS Medicinal Chemistry Letters, 2012, 3, 668-672.	2.8	30
32	Stereochemical Insignificance Discovered in Acinetobacter baumannii Quorum Sensing. PLoS ONE, 2012, 7, e37102.	2.5	5
33	Design, Synthesis, and Biological Activities of Closantel Analogues: Structural Promiscuity and Its Impact onOnchocerca volvulus. Journal of Medicinal Chemistry, 2011, 54, 3963-3972.	6.4	28
34	The Use of 3,5,4′-Tri- <i>O</i> -acetylresveratrol as a Potential Prodrug for Resveratrol Protects Mice from γ-Irradiation-Induced Death. ACS Medicinal Chemistry Letters, 2011, 2, 270-274.	2.8	33
35	Protein-Protein Interactions and Cancer: Targeting the Central Dogma. Current Topics in Medicinal Chemistry, 2011, 11, 258-280.	2.1	60
36	Inducing apoptosis in chemotherapyâ€resistant Bâ€lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the antiâ€apoptotic unfolded protein response signalling network. British Journal of Haematology, 2011, 153, 741-752.	2.5	65

#	Article	IF	CITATIONS
37	A Multivalent Probe for Al-2 Quorum-Sensing Receptors. Journal of the American Chemical Society, 2011, 133, 15934-15937.	13.7	21
38	A small molecule antagonist of ghrelin O-acyltransferase (GOAT). Chemical Communications, 2011, 47, 7512.	4.1	44
39	Shedding Light on the Ghrelin/GOAT Metabolism Saga. ChemBioChem, 2011, 12, 523-525.	2.6	4
40	Synthesis of â€~clickable' acylhomoserine lactone quorum sensing probes: Unanticipated effects on mammalian cell activation. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2702-2705.	2.2	16
41	Structural Basis for Ligand Recognition and Discrimination of a Quorum-quenching Antibody. Journal of Biological Chemistry, 2011, 286, 17351-17358.	3.4	50
42	Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy. PLoS Neglected Tropical Diseases, 2011, 5, e1411.	3.0	42
43	catâ€ELCCA: A Robust Method To Monitor the Fatty Acid Acyltransferase Activity of Ghrelin <i>O</i> â€Acyltransferase (GOAT). Angewandte Chemie - International Edition, 2010, 49, 9630-9634.	13.8	46
44	Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3424-3429.	7.1	91
45	Specific fluorogenic probes for ozone in biological and atmospheric samples. Nature Chemistry, 2009, 1, 316-321.	13.6	80
46	Enhancement of a Catalysis-Based Fluorometric Detection Method for Palladium through Rational Fine-Tuning of the Palladium Species. Journal of the American Chemical Society, 2009, 131, 5163-5171.	13.7	152
47	External Compression-Induced Fracture Patterning on the Surface of Poly(dimethylsiloxane) Cubes and Microspheres. Langmuir, 2009, 25, 3102-3107.	3.5	7
48	Scalable and Concise Synthesis of Dichlorofluorescein Derivatives Displaying Tissue Permeation in Live Zebrafish Embryos. ChemBioChem, 2008, 9, 214-218.	2.6	25
49	Oxidation State-Specific Fluorescent Method for Palladium(II) and Platinum(IV) Based on the Catalyzed Aromatic Claisen Rearrangement. Journal of the American Chemical Society, 2008, 130, 16472-16473.	13.7	100
50	A Highly Sensitive Fluorescent Sensor for Palladium Based on the Allylic Oxidative Insertion Mechanism. Journal of the American Chemical Society, 2007, 129, 12354-12355.	13.7	254
51	Solid-Phase Olefin Cross-Metathesis Promoted by a Linker. Organic Letters, 2007, 9, 5235-5238.	4.6	23
52	Chemoproteomic Profiling Uncovers CDK4-Mediated Phosphorylation of the Translational Suppressor 4E-BP1. SSRN Electronic Journal, 0, , .	0.4	0