Wee Ho Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811482/publications.pdf Version: 2024-02-01

WEE HOLIM

#	Article	IF	CITATIONS
1	A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrology and Earth System Sciences, 2014, 18, 1575-1589.	4.9	192
2	A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. Journal of Hydrology, 2016, 538, 82-95.	5.4	171
3	Exploring the water storage changes in the largest lake (<scp>S</scp> elin <scp>C</scp> o) over the <scp>T</scp> ibetan <scp>P</scp> lateau during 2003–2012 from a basinâ€wide hydrological modeling. Water Resources Research, 2015, 51, 8060-8086.	4.2	137
4	Global drought and severe drought-affected populations in 1.5Âand 2 °C warmer worlds. Earth System Dynamics, 2018, 9, 267-283.	7.1	123
5	On wind speed pattern and energy potential in China. Applied Energy, 2019, 236, 867-876.	10.1	111
6	Global Floods and Water Availability Driven by Atmospheric Rivers. Geophysical Research Letters, 2017, 44, 10,387.	4.0	102
7	Hydroclimatic projections for the Murrayâ€Đarling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models. Water Resources Research, 2011, 47, .	4.2	91
8	Evaluation and machine learning improvement of global hydrological model-based flood simulations. Environmental Research Letters, 2019, 14, 114027.	5.2	88
9	Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Climate Dynamics, 2016, 46, 3481-3497.	3.8	64
10	Multi-scale assessment of eco-hydrological resilience to drought in China over the last three decades. Science of the Total Environment, 2019, 672, 201-211.	8.0	46
11	Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs. Hydrology and Earth System Sciences, 2020, 24, 2921-2930.	4.9	46
12	Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8329-8349.	3.3	45
13	Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets. Hydrology and Earth System Sciences, 2018, 22, 351-371.	4.9	43
14	Response of Ecosystem Water Use Efficiency to Drought over China during 1982–2015: Spatiotemporal Variability and Resilience. Forests, 2019, 10, 598.	2.1	42
15	Improving snow process modeling with satelliteâ€based estimation of nearâ€surfaceâ€∎irâ€temperature lapse rate. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,005.	3.3	39
16	Pan evaporation paradox and evaporative demand from the past to the future over China: a review. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1207.	6.5	38
17	Increasing population exposure to global warm-season concurrent dry and hot extremes under different warming levels. Environmental Research Letters, 2021, 16, 094002.	5.2	34
18	The energy balance of a US Class A evaporation pan. Agricultural and Forest Meteorology, 2013, 182-183, 314-331.	4.8	33

Wee Ho Lim

#	Article	IF	CITATIONS
19	Global Freshwater Availability Below Normal Conditions and Population Impact Under 1.5 and 2°C Stabilization Scenarios. Geophysical Research Letters, 2018, 45, 9803-9813.	4.0	29
20	Partitioning the variance between space and time. Geophysical Research Letters, 2010, 37, .	4.0	28
21	The aerodynamics of pan evaporation. Agricultural and Forest Meteorology, 2012, 152, 31-43.	4.8	26
22	Visualizing the Interconnections Among Climate Risks. Earth's Future, 2019, 7, 85-100.	6.3	24
23	The spatial exposure of the Chinese infrastructure system to flooding and drought hazards. Natural Hazards, 2016, 80, 1083-1118.	3.4	23
24	Longâ€Term Changes in Global Socioeconomic Benefits of Flood Defenses and Residual Risk Based on CMIP5 Climate Models. Earth's Future, 2018, 6, 938-954.	6.3	22
25	Increased adversely-affected population from water shortage below normal conditions in China with anthropogenic warming. Science Bulletin, 2019, 64, 567-569.	9.0	22
26	Attributing changes in future extreme droughts based on PDSI in China. Journal of Hydrology, 2019, 573, 607-615.	5.4	22
27	Changes of compound hot and dry extremes on different land surface conditions in China during 1957–2018. International Journal of Climatology, 2021, 41, E1085.	3.5	21
28	A mathematical model of pan evaporation under steady state conditions. Journal of Hydrology, 2016, 540, 641-658.	5.4	20
29	Observationâ€Constrained Projection of Global Flood Magnitudes With Anthropogenic Warming. Water Resources Research, 2021, 57, e2020WR028830.	4.2	19
30	Projecting and Attributing Future Changes of Evaporative Demand over China in CMIP5 Climate Models. Journal of Hydrometeorology, 2017, 18, 977-991.	1.9	18
31	Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau. Hydrology Research, 2018, 49, 1977-1990.	2.7	18
32	Hydrograph Separation and Development of Empirical Relationships Using Single-Parameter Digital Filters. Journal of Hydrologic Engineering - ASCE, 2009, 14, 271-279.	1.9	17
33	Improving streamflow and flood simulations in three headwater catchments of the Tarim River based on a coupled glacier-hydrological model. Journal of Hydrology, 2021, 603, 127048.	5.4	17
34	Snow Hydrology in the Upper Yellow River Basin Under Climate Change: A Land Surface Modeling Perspective. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,676.	3.3	16
35	Spatio-temporal patterns of drought evolution over the Beijing-Tianjin-Hebei region, China. Journal of Chinese Geography, 2019, 29, 863-876.	3.9	16
36	Changes in compound hot and dry day and population exposure across China under climate change. International Journal of Climatology, 2022, 42, 2935-2949.	3.5	15

Wee Ho Lim

#	Article	IF	CITATIONS
37	Generation of Total Runoff Hydrographs Using a Method Derived from a Digital Filter Algorithm. Journal of Hydrologic Engineering - ASCE, 2009, 14, 101-106.	1.9	12
38	The Predictability of Annual Evapotranspiration and Runoff in Humid and Nonhumid Catchments over China: Comparison and Quantification. Journal of Hydrometeorology, 2018, 19, 533-545.	1.9	11
39	Understanding climate-induced changes of snow hydrological processes in the Kaidu River Basin through the CemaNeige-GR6J model. Catena, 2022, 212, 106082.	5.0	7
40	Water shortage risks for China's coal power plants under climate change. Environmental Research Letters, 2021, 16, 044011.	5.2	5
41	Random Forest-Based Reconstruction and Application of the GRACE Terrestrial Water Storage Estimates for the Lancang-Mekong River Basin. Remote Sensing, 2021, 13, 4831.	4.0	5
42	Up-scaling short-term process-level understanding to longer timescales using a covariance-based approach. Hydrology and Earth System Sciences, 2014, 18, 31-45.	4.9	4
43	The Effect of Elevation Bias in Interpolated Air Temperature Data Sets on Surface Warming in China During 1951–2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2141-2151.	3.3	3
44	Stronger Global Warming on Nonrainy Days in Observations From China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031792.	3.3	3
45	Generalized method to estimate value of urban assets for natural disaster risk assessment at the macro scale. Hydrological Research Letters, 2015, 9, 103-106.	0.5	1
46	Decreasing "alpine tundra―climatic type with global warming in the Tibetan Plateau. Theoretical and Applied Climatology, 2019, 137, 1949-1955.	2.8	0