Renata Tisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811200/publications.pdf

Version: 2024-02-01

430874 526287 41 804 18 27 citations h-index g-index papers 42 42 42 956 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Molecular Dynamics Simulations Reveal Structural Interconnections within Sec14-PH Bipartite Domain from Human Neurofibromin. International Journal of Molecular Sciences, 2022, 23, 5707.	4.1	O
2	Cannabidiol Antiproliferative Effect in Triple-Negative Breast Cancer MDA-MB-231 Cells Is Modulated by Its Physical State and by IGF-1. International Journal of Molecular Sciences, 2022, 23, 7145.	4.1	5
3	The Multi-Level Mechanism of Action of a Pan-Ras Inhibitor Explains its Antiproliferative Activity on Cetuximab-Resistant Cancer Cells. Frontiers in Molecular Biosciences, 2021, 8, 625979.	3.5	7
4	Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners. Cell Reports, 2021, 34, 108906.	6.4	17
5	AMPK Phosphorylation Is Controlled by Glucose Transport Rate in a PKA-Independent Manner. International Journal of Molecular Sciences, 2021, 22, 9483.	4.1	4
6	DNA binding modes influence Rap1 activity in the regulation of telomere length and MRX functions at DNA ends. Nucleic Acids Research, 2020, 48, 2424-2441.	14.5	7
7	Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives. Biomolecules, 2020, 10, 1535.	4.0	8
8	Synthesis, Molecular Modeling and Biological Evaluation of Metabolically Stable Analogues of the Endogenous Fatty Acid Amide Palmitoylethanolamide. International Journal of Molecular Sciences, 2020, 21, 9074.	4.1	1
9	Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Computational and Structural Biotechnology Journal, 2020, 18, 1137-1152.	4.1	31
10	On the propagation of the OH radical produced by Cu-amyloid beta peptide model complexes. Insight from molecular modelling. Metallomics, 2020, 12, 1765-1780.	2.4	7
11	Structureâ€"function relationships of the Mre11 protein in the control of DNA end bridging and processing. Current Genetics, 2019, 65, 11-16.	1.7	12
12	The ATP-bound conformation of the Mre11â€"Rad50 complex is essential for Tel1/ATM activation. Nucleic Acids Research, 2019, 47, 3550-3567.	14.5	35
13	Structurally distinct Mre11 domains mediate MRX functions in resection, end-tethering and DNA damage resistance. Nucleic Acids Research, 2018, 46, 2990-3008.	14.5	34
14	Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 117-131.	4.1	36
15	The <scp>MRX</scp> complex regulates Exo1 resection activity by altering <scp>DNA</scp> end structure. EMBO Journal, 2018, 37, .	7.8	21
16	Natural Compounds in Cancer Prevention: Effects of Coffee Extracts and Their Main Polyphenolic Component, 5â€∢i>O⟨/i>â€Caffeoylquinic Acid, on Oncogenic Ras Proteins. Chemistry - an Asian Journal, 2017, 12, 2457-2466.	3.3	46
17	Calcium homeostasis and signaling in fungi and their relevance forpathogenicity of yeasts and filamentous fungi. AIMS Molecular Science, 2016, 3, 505-549.	0.5	23
18	Measurement of Calcium Uptake in Yeast Using ⁴⁵ Ca. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076877.	0.3	1

#	Article	IF	CITATIONS
19	Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. Cell Calcium, 2015, 57, 57-68.	2.4	32
20	Monitoring Yeast Intracellular Ca ²⁺ Levels Using an In Vivo Bioluminescence Assay. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076851.	0.3	9
21	Total Cellular Ca ²⁺ Measurements in Yeast Using Flame Photometry. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076869.	0.3	0
22	Yeast as a Model for Ras Signalling. Methods in Molecular Biology, 2014, 1120, 359-390.	0.9	10
23	The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H+-ATPase in Saccharomyces cerevisiae cells. Cell Calcium, 2012, 51, 72-81.	2.4	32
24	Localization of Ras signaling complex in budding yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1208-1216.	4.1	33
25	PKA-dependent regulation of Cdc25 RasGEF localization in budding yeast. FEBS Letters, 2011, 585, 3914-3920.	2.8	16
26	Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium, 2011, 49, 376-386.	2.4	43
27	Structure-Activity Studies on Arylamides and Arysulfonamides Ras Inhibitors. Current Cancer Drug Targets, 2010, 10, 192-199.	1.6	9
28	Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H+-ATPase in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 2008, 8, 622-630.	2.3	28
29	The budding yeast RasGEF Cdc25 reveals an unexpected nuclear localization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2363-2374.	4.1	16
30	The large N-terminal domain of Cdc25 protein of the yeastSaccharomyces cerevisiaeis required for glucose-induced Ras2 activation. FEMS Yeast Research, 2007, 7, 1270-1275.	2.3	12
31	Functional analysis of RalGPS2, a murine guanine nucleotide exchange factor for RalA GTPase. Experimental Cell Research, 2007, 313, 2293-2307.	2.6	32
32	Calcium signaling and sugar-induced activation of plasma membrane H+-ATPase in Saccharomyces cerevisiae cells. Biochemical and Biophysical Research Communications, 2006, 343, 1234-1243.	2.1	24
33	The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation. Microbiology (United Kingdom), 2006, 152, 1231-1242.	1.8	14
34	Design and Characterization of a New Class of Inhibitors of Ras Activation. Annals of the New York Academy of Sciences, 2004, 1030, 52-61.	3.8	13
35	Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Current Genetics, 2004, 45, 83-89.	1.7	43
36	Phospholipase C is required for glucose-induced calcium influx in budding yeast. FEBS Letters, 2002, 520, 133-138.	2.8	63

RENATA TISI

#	Article	IF	CITATION
37	Cloning and Characterization of a New Ralâ€GEF Expressed in Mouse Testis. Annals of the New York Academy of Sciences, 2002, 973, 135-137.	3.8	8
38	PtdIns(4,5)P2 and phospholipase C-independent Ins(1,4,5)P3 signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochemical Journal, 2001, 359, 517.	3.7	9
39	3-Nitrocoumarin is an efficient inhibitor of budding yeast phospholipase-C. Cell Biochemistry and Function, 2001, 19, 229-235.	2.9	19
40	The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1405, 147-154.	4.1	43
41	Modeling Calcium Signaling in S. cerevisiae Highlights the Role and Regulation of the Calmodulin-Calcineurin Pathway in Response to Hypotonic Shock. Frontiers in Molecular Biosciences, 0, 9, .	3.5	1