Young Keun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2810766/publications.pdf

Version: 2024-02-01

174 papers

2,924 citations

218677 26 h-index 214800 47 g-index

178 all docs

 $\begin{array}{c} 178 \\ \text{docs citations} \end{array}$

178 times ranked 4722 citing authors

#	Article	IF	Citations
1	A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nature Nanotechnology, 2011, 6, 675-682.	31.5	470
2	A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nature Nanotechnology, 2009, 4, 259-264.	31.5	158
3	Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity. Scientific Reports, 2015, 5, 12135.	3.3	143
4	Synthesis of streptavidin-FITC-conjugated core–shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials, 2008, 29, 4003-4011.	11.4	99
5	Iron–Gold Barcode Nanowires. Angewandte Chemie - International Edition, 2007, 46, 3663-3667.	13.8	94
6	Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria. Chemical Communications, 2012, 48, 4591.	4.1	74
7	Effect of the magnetic core size of amino-functionalized Fe 3 O 4 -mesoporous SiO 2 core-shell nanoparticles on the removal of heavy metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 133-140.	4.7	67
8	Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid. Analytical Biochemistry, 2014, 447, 114-118.	2.4	60
9	Switching behavior of indium selenide-based phase-change memory cell. IEEE Transactions on Magnetics, 2005, 41, 1034-1036.	2.1	53
10	Tocopheryl oligochitosan-based self assembling oligomersomes for siRNA delivery. Biomaterials, 2011, 32, 849-857.	11.4	50
11	Tunable synthesis and multifunctionalities of Fe3O4–ZnO hybrid core-shell nanocrystals. Materials Research Bulletin, 2013, 48, 551-558.	5.2	45
12	Magnetic and optical properties of monosized Eu-doped ZnO nanocrystals from nanoemulsion. Journal of Applied Physics, 2012, 111, .	2.5	36
13	Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy. Pharmaceutics, 2019, 11, 493.	4.5	35
14	Effect of Zr concentration on the microstructure of Al and the magnetoresistance properties of the magnetic tunnel junction with a Zr-alloyed Al–oxide barrier. Applied Physics Letters, 2003, 83, 317-319.	3.3	33
15	Solid-state phase transformation mechanism for formation of magnetic multi-granule nanoclusters. RSC Advances, 2013, 3, 3631.	3.6	32
16	MnO ₂ Nanowire–CeO ₂ Nanoparticle Composite Catalysts for the Selective Catalytic Reduction of NO <i></i> >with NH ₃ . ACS Applied Materials & Amp; Interfaces, 2018, 10, 32112-32119.	8.0	32
17	<i>In Situ</i> Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. Nano Letters, 2020, 20, 4188-4196.	9.1	32
18	Remote Control of Timeâ∈Regulated Stretching of Ligandâ∈Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells. Advanced Materials, 2021, 33, e2008353.	21.0	31

#	ARTICLE	IF	CITATIONS
19	Independent Tuning of Nanoâ€Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells. Advanced Materials, 2020, 32, 2004300.	21.0	30
20	Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33483-33491.	8.0	30
21	Self-assembly of fluorescent and magnetic Fe3O4@coordination polymer nanochains. Chemical Communications, 2014, 50, 7617.	4.1	29
22	Functional Manipulation of Dendritic Cells by Photoswitchable Generation of Intracellular Reactive Oxygen Species. ACS Chemical Biology, 2015, 10, 757-765.	3.4	29
23	Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen. Journal of Nanobiotechnology, 2016, 14, 76. Role of the Heavy Metal's Crystal Phase in Oscillations of Perpendicular Magnetic Anisotropy and the	9.1	29
24	Interfacial Dzyaloshinskii-Moriya Interaction in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">W</mml:mi><mml:mo>/</mml:mo><mml:mi>Co</mml:mi><mml:mtext> mathvariant="normal">B<mml:mi><mml:mo>/</mml:mo><mml:mi>MgO</mml:mi></mml:mi></mml:mtext></mml:mrow></mml:math>	<3.8 <mml:mi></mml:mi>	Fe
25	Films. Physical Review Applied, 2018, 9, . Application of radially grown ZnO nanowires on poly- <scp>I</scp> -lactide microfibers complexed with a tumor antigen for cancer immunotherapy. Nanoscale, 2019, 11, 4591-4600.	5.6	29
26	Enhancement of perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya interaction in thin ferromagnetic films by atomic-scale modulation of interfaces. NPG Asia Materials, 2020, 12, .	7.9	28
27	Thermal stability of spin-valves incorporating amorphous CoNbZr under and capping layers. Journal of Applied Physics, 2002, 91, 8581.	2.5	25
28	Effects of notch shape on the magnetic domain wall motion in nanowires with in-plane or perpendicular magnetic anisotropy. Journal of Applied Physics, 2012, 111, .	2.5	25
29	Metallic Fe–Au Barcode Nanowires as a Simultaneous T Cell Capturing and Cytokine Sensing Platform for Immunoassay at the Single-Cell Level. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23901-23908.	8.0	25
30	Ni–Au core–shell nanowires: synthesis, microstructures, biofunctionalization, and the toxicological effects on pancreatic cancer cells. Journal of Materials Chemistry, 2011, 21, 12089.	6.7	24
31	One-pot synthesis and characterization of bifunctional Au–Fe3O4 hybrid core–shell nanoparticles. Journal of Alloys and Compounds, 2012, 537, 60-64.	5.5	24
32	Synthesis, microstructure, and magnetic properties of monosized Mn x Zn y Fe3 \hat{a} x \hat{a} yO4 ferrite nanocrystals. Nanoscale Research Letters, 2013, 8, 530.	5.7	24
33	Efficient intracellular delivery of biomacromolecules employing clusters of zinc oxide nanowires. Nanoscale, 2017, 9, 15371-15378.	5.6	24
34	Strategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals. Nature Communications, 2020, 11, 298.	12.8	24
35	The toxicity and distribution of iron oxide–zinc oxide coreâ€shell nanoparticles in C57BL/6 mice after repeated subcutaneous administration. Journal of Applied Toxicology, 2015, 35, 593-602.	2.8	22
36	Magnetic Control and Realâ€Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. Small, 2021, 17, e2102892.	10.0	22

#	Article	IF	Citations
37	Effect of interparticle interactions and size dispersion in magnetic nanoparticle assemblies: A static and dynamic study. Applied Physics Letters, 2011, 99, .	3.3	21
38	Ultrahigh Tensile Strength Nanowires with a Ni/Ni–Au Multilayer Nanocrystalline Structure. Nano Letters, 2016, 16, 3500-3506.	9.1	21
39	Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages. Nano Letters, 2020, 20, 7272-7280.	9.1	21
40	Design of Magneticâ€Plasmonic Nanoparticle Assemblies via Interface Engineering of Plasmonic Shells for Targeted Cancer Cell Imaging and Separation. Small, 2020, 16, e2001103.	10.0	20
41	Fluorescent detection of dipicolinic acid as a biomarker in bacterial spores employing terbium ion-coordinated magnetite nanoparticles. Journal of Hazardous Materials, 2021, 408, 124870.	12.4	19
42	Immunoregulation of Macrophages by Controlling Winding and Unwinding of Nanohelical Ligands. Advanced Functional Materials, 2021, 31, 2103409.	14.9	19
43	Compositional Dependence of Magnetic Properties in CoFe/Au Nanobarcodes. Applied Physics Express, 2012, 5, 103003.	2.4	18
44	Structural and magnetic properties of epitaxial Co2FeAl films grown on MgO substrates for different growth temperatures. Acta Materialia, 2012, 60, 6714-6719.	7.9	18
45	Magnetic NiFe/Au barcode nanowires with self-powered motion. Journal of Applied Physics, 2012, 111, .	2.5	17
46	Synthesis, microstructure, and physical properties of metallic barcode nanowires. Metals and Materials International, 2017, 23, 413-425.	3.4	17
47	Magnetization reversal of ferromagnetic nanosprings affected by helical shape. Nanoscale, 2018, 10, 20405-20413.	5.6	17
48	Magnetic Direct-Write Skyrmion Nanolithography. ACS Nano, 2020, 14, 14960-14970.	14.6	17
49	Effect of compositional variation on the soft magnetic properties ofÂFe(87â^'xâ^'y)CoxTi7 Zr6By amorphous ribbons. Current Applied Physics, 2014, 14, 685-687.	2.4	15
50	Microstructural evolution and electrical resistivity of nanocrystalline W thin films grown by sputtering. Materials Characterization, 2018, 145, 473-478.	4.4	15
51	Remote Switching of Elastic Movement of Decorated Ligand Nanostructures Controls the Adhesionâ€Regulated Polarization of Host Macrophages. Advanced Functional Materials, 2021, 31, 2008698.	14.9	15
52	The pH dependence of Co-Cu alloy thin films fabricated on amorphous substrate by DC electrodeposition. IEEE Transactions on Magnetics, 2005, 41, 930-932.	2.1	14
53	Magnetically driven spinning nanowires as effective materials for eradicating living cells. Journal of Applied Physics, 2012, 111, .	2.5	14
54	Morphology and electrical properties of high aspect ratio ZnO nanowires grown by hydrothermal method without repeated batch process. Applied Physics Letters, 2012, 101, 083905.	3.3	14

#	Article	IF	Citations
55	Spinâ€Orbit Torque Driven Magnetization Switching and Precession by Manipulating Thickness of CoFeB/W Heterostructures. Advanced Electronic Materials, 2020, 6, 1901004.	5.1	14
56	Non-aqueous synthesis of water-dispersible Fe ₃ O ₄ –Ca ₃ (PO ₄) ₂ core–shell nanoparticles. Nanotechnology, 2011, 22, 055701.	2.6	13
57	Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction. Journal of Magnetism and Magnetic Materials, 2017, 429, 221-226.	2.3	13
58	Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni–Au core–shell nanowires. Nanotechnology, 2017, 28, 03LT01.	2.6	13
59	Composition-driven crystal structure transformation and magnetic properties of electrodeposited Co–W alloy nanowires. Journal of Alloys and Compounds, 2020, 843, 155902.	5.5	13
60	Submolecular Ligand Size and Spacing for Cell Adhesion. Advanced Materials, 2022, 34, e2110340.	21.0	13
61	Synthesis and Characterization of $fm Fe-FeO_{m x}\$ Core-Shell Nanowires. IEEE Transactions on Magnetics, 2008, 44, 3950-3953.	2.1	12
62	Current fluctuation of electron and hole carriers in multilayer WSe2 field effect transistors. Applied Physics Letters, 2015, 107 , .	3.3	12
63	Interlayer diffusion and specularity aspects of amorphous CoNbZr-based spin-valves. IEEE Transactions on Magnetics, 2002, 38, 2685-2687.	2.1	11
64	Synthesis and microwave properties of highly permeable FeCoâ€based nanoâ€alloys. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4087-4090.	1.8	11
65	Nonaqueous synthesis and magnetic properties of ZnFe2O4 nanocrystals with narrow size distributions. Journal of Applied Physics, 2011, 109, 07B511.	2.5	11
66	Synthesis and Characterization of Magnetic–Luminescent Fe3O4–CdSe Core–Shell Nanocrystals. Electronic Materials Letters, 2019, 15, 102-110.	2.2	11
67	Thickness and composition-dependent spin-orbit torque behaviors in perpendicularly magnetized Ta/W (t)/CoFeB and Ta1-W /CoFeB junction structures. Journal of Alloys and Compounds, 2020, 823, 153744.	5.5	11
68	Highly-sensitive magnetic sensor for detecting magnetic nanoparticles based on magnetic tunnel junctions at a low static field. AIP Advances, 2021, 11 , .	1.3	11
69	Zinc Oxide Nanoâ€Spicules on Polylactic Acid for Superâ€Hydrophilic and Bactericidal Surfaces. Advanced Functional Materials, 2021, 31, 2100844.	14.9	11
70	Spin–orbit torque engineering in β-W/CoFeB heterostructures with W–Ta or W–V alloy layers between β-W and CoFeB. NPG Asia Materials, 2021, 13, .	7.9	11
71	Receptorâ€Level Proximity and Fastening of Ligands Modulates Stem Cell Differentiation. Advanced Functional Materials, 2022, 32, .	14.9	11
72	Characteristics of magnetic tunnel junctions consisting of amorphous CoNbZr layers. Journal of Applied Physics, 2003, 93, 8361-8363.	2.5	10

#	Article	IF	Citations
73	Optimization of Ru intermediate layer in CoCr-based perpendicular magnetic recording media. Physica Status Solidi A, 2004, 201, 1763-1766.	1.7	10
74	Spin wave quantization in continuous film with stripe domains. Journal of Applied Physics, 2009, 105, 07D544.	2.5	10
75	Optimization of Fe/Co ratio in Fe (87-x-y) Co x Ti 7 Zr 6 B y alloys for high saturation magnetization. Current Applied Physics, 2016, 16, 515-519.	2.4	10
76	Synthesis of Co nanotubes by nanoporous template-assisted electrodeposition via the incorporation of vanadyl ions. Chemical Communications, 2017, 53, 1825-1828.	4.1	10
77	Properties of a rare earth free L10-FeNi hard magnet developed through annealing of FeNiPC amorphous ribbons. Current Applied Physics, 2019, 19, 599-605.	2.4	10
78	Surface-ligand-induced crystallographic disorder–order transition in oriented attachment for the tuneable assembly of mesocrystals. Nature Communications, 2022, 13, 1144.	12.8	10
79	Labeling of macrophage cell using biocompatible magnetic nanoparticles. Journal of Applied Physics, 2011, 109, 07B309.	2.5	9
80	Dimensional Dependence of Magnetic Properties in Arrays of CoFe/Au Barcode Nanowire. IEEE Transactions on Magnetics, 2012, 48, 3929-3932.	2.1	9
81	Synthesis and magnetic properties of size-tunable MnxFe3â^xO4 ferrite nanoclusters. Journal of Applied Physics, 2014, 115, 17B517.	2.5	9
82	Multiâ€Component Mesocrystalline Nanoparticles with Enhanced Photocatalytic Activity. Small, 2020, 16, e2004696.	10.0	9
83	Large reduction in switching current driven by spin-orbit torque in W/CoFeB heterostructures with W〓N interfacial layers. Acta Materialia, 2020, 200, 551-558.	7.9	9
84	Design of recessed yoke heads for minimizing adjacent track encroachment. IEEE Transactions on Magnetics, 2000, 36, 2524-2526.	2.1	8
85	Fabrication of suspended single-walled carbon nanotubesvia a direct lithographic route. Journal of Materials Chemistry, 2006, 16, 174-178.	6.7	8
86	Immunochromatographic Assay of Hepatitis B Surface Antigen Using Magnetic Nanoparticles as Signal Materials. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	8
87	Photonic Reactions Leading to Fluorescence in a Polymeric System Induced by the Photothermal Effect of Magnetite Nanoparticles Using a 780 nm Multiphoton Laser. Small, 2017, 13, 1700897.	10.0	8
88	Magnetic Anisotropy Evolution in CoFe/Au Barcode Nanowire Arrays. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	7
89	Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films. Journal of Magnetism and Magnetic Materials, 2014, 371, 149-156.	2.3	7
90	Fabrication of planar and curved polyimide membranes with a pattern transfer method using ZnO nanowire arrays as templates. Materials Letters, 2015, 149, 109-112.	2.6	7

#	Article	IF	CITATIONS
91	Eradication of <i>Plasmodium falciparum</i> from Erythrocytes by Controlled Reactive Oxygen Species via Photodynamic Inactivation Coupled with Photofunctional Nanoparticles. ACS Applied Materials & Diterfaces, 2017, 9, 12975-12981.	8.0	7
92	Assessment of Cellular Uptake Efficiency According to Multiple Inhibitors of Fe3O4-Au Core-Shell Nanoparticles: Possibility to Control Specific Endocytosis in Colorectal Cancer Cells. Nanoscale Research Letters, 2020, 15, 165.	5.7	7
93	Chemical Vapor Synthesis of Nonagglomerated Nickel Nanoparticles by In-Flight Coating. ACS Omega, 2021, 6, 27842-27850.	3.5	7
94	Magnetoresistance Variation of Magnetic Tunnel Junctions with NiFeSiB/CoFeB Free Layers Depending on MgO Tunnel Barrier Thickness. IEEE Transactions on Magnetics, 2008, 44, 2547-2550.	2.1	6
95	Microstructural Changes of Epitaxial Fe/MgO Layers Grown on InAs(001) Substrates. Crystal Growth and Design, 2011, 11, 2889-2896.	3.0	6
96	Microstructure and Magnetic Properties of LaSrMnO Nanoparticles and Their Application to Cardiac Immunoassay. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	6
97	White-light-emitting magnetite nanoparticle–polymer composites: photonic reactions of magnetic multi-granule nanoclusters as photothermal agents. Nanoscale, 2016, 8, 17136-17140.	5.6	6
98	Annealing effect on the magnetic properties of cobalt-based amorphous alloys. Current Applied Physics, 2017, 17, 548-551.	2.4	6
99	Magnetically soft FeCoTiZrB alloys with high saturation magnetization. Intermetallics, 2017, 90, 164-168.	3.9	6
100	Quantitative Analysis on Cellular Uptake of Clustered Ferrite Magnetic Nanoparticles. Electronic Materials Letters, 2019, 15, 471-480.	2.2	6
101	Association between Cell Microenvironment Altered by Gold Nanowire Array and Regulation of Partial Epithelialâ€Mesenchymal Transition. Advanced Functional Materials, 2021, 31, 2008758.	14.9	6
102	Current aspects and future perspectives of high-density MRAM. Physica Status Solidi A, 2004, 201, 1617-1620.	1.7	5
103	Influence of freelayer in magnetic tunnel junction on switching of submicrometer magnetoresistive random access memory arrays. IEEE Transactions on Magnetics, 2005, 41, 883-886.	2.1	5
104	Control of magnetic behavior in Fe/sub 3/O/sub 4/ nanostructures. IEEE Transactions on Magnetics, 2005, 41, 3304-3306.	2.1	5
105	Electrochemical preparation of Co ₃ Pt nanowires. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4158-4161.	1.8	5
106	Giant Diamagnetism in AuFe Nanoparticles. IEEE Transactions on Magnetics, 2009, 45, 2442-2445.	2.1	5
107	Synthesis and Magnetic Properties of Multifunctional Fe\$_{3}\$O\$_{4}\$-AuPt Core-Shell Nanoparticles. IEEE Transactions on Magnetics, 2009, 45, 4041-4044.	2.1	5
108	Fabrication of Multifunctional Au Doped CoPt Nanowires. IEEE Transactions on Magnetics, 2009, 45, 2471-2474.	2.1	5

#	Article	IF	Citations
109	Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer. Nanotechnology, 2011, 22, 455303.	2.6	5
110	Size-dependent changeover in magnetization reversal mode of self-assembled one-dimensional chains of spherical Fe ₃ O ₄ nanoparticles. Japanese Journal of Applied Physics, 2016, 55, 100303.	1.5	5
111	Formation of high aspect ratio fused silica nanowalls by fluorine-based deep reactive ion etching. Nano Structures Nano Objects, 2018, 15, 212-215.	3.5	5
112	Microwave absorption properties of magnetite multi-granule nanocluster–multiwall carbon nanotube composites. Functional Materials Letters, 2019, 12, 1950011.	1.2	5
113	Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures. Nature Communications, 2021, 12, 3280.	12.8	5
114	Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires. Journal of Materials Science and Technology, 2022, 105, 17-25.	10.7	5
115	High-frequency noise absorbing properties of nickel nanowire arrays prepared by DC electrodeposition. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4025-4028.	1.8	4
116	Structural and Magnetic Properties of Amorphous and Nanocrystalline CoFeSiB Thin Films. IEEE Nanotechnology Magazine, 2008, 7, 409-411.	2.0	4
117	Transport Properties of Magnetic Tunnel Junctions Comprising NiFeSiB/CoFeB Hybrid Free Layers. IEEE Transactions on Magnetics, 2009, 45, 2364-2366.	2.1	4
118	Effects of Co addition on magneto-transport properties of magnetic tunnel junction consisting of CoFeB or CoFeSiB free layer. Journal of Applied Physics, 2011, 109, 07D346.	2.5	4
119	Control of Magnetic Domains in Co/Pd Multilayered Nanowires with Perpendicular Magnetic Anisotropy. Journal of Nanoscience and Nanotechnology, 2012, 12, 428-432.	0.9	4
120	Growth behavior and field emission property of ZnO nanowire arrays on Au and Ag films. AlP Advances, 2013, 3, .	1.3	4
121	Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas. Journal of Nanoscience and Nanotechnology, 2016, 16, 4814-4819.	0.9	4
122	Spin–orbit torques in normal metal/Nb/ferromagnet heterostructures. Scientific Reports, 2021, 11, 21081.	3.3	4
123	Engineering the shape of one-dimensional metallic nanostructures via nanopore electrochemistry. Nano Today, 2022, 42, 101348.	11.9	4
124	Variation of spin-orbit torque and spin transport properties by V alloying in \hat{l}^2 -W-based magnetic heterostructures. Scripta Materialia, 2022, 211, 114486.	5.2	4
125	Thermal and Mn diffusion behaviors of CoNbZr-based spin valves with nano oxide layers. IEEE Transactions on Magnetics, 2003, 39, 2824-2826.	2.1	3
126	Experimental and Simulation Study to Identify Current-Confined Path in Cu–Al Space Layer for CPP-GMR Spin-Valve Applications. IEEE Transactions on Magnetics, 2006, 42, 2633-2635.	2.1	3

#	Article	IF	CITATIONS
127	Synthesis and magnetic properties of multifunctional CoPtAu nanoparticles. Journal of Applied Physics, 2009, 105, 07B527.	2.5	3
128	Gate-Controlled Spin-Orbit Coupling in InAs/InGaAs Quantum Well Structures. Journal of Nanoscience and Nanotechnology, 2014, 14, 5212-5215.	0.9	3
129	Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 633-641.	1.7	3
130	Microstructure and Magnetic Properties of CoFe Nanowires and Helical Nanosprings. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	3
131	Exchange anisotropy and thermal stability of Mn-Ir-Pt exchange-biased layers. IEEE Transactions on Magnetics, 2000, 36, 2569-2571.	2.1	2
132	Magnetic tunnel junctions stabilized by modified synthetic antiferromagnets. Physica Status Solidi A, 2004, 201, 1676-1679.	1.7	2
133	Domain wall configuration and magneto-transport properties in dual spin-valve with nanoconstriction. Applied Physics Letters, 2012, 100, 242409.	3.3	2
134	Magnetic Nanodiscs Fabricated from Multilayered Nanowires. Journal of Nanoscience and Nanotechnology, 2014, 14, 7923-7928.	0.9	2
135	Functionalization of 3D printed microâ€containers with Niâ€Au coreâ€shell nanowires. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600887.	1.8	2
136	Crystallographic Orientation and Microstructure-Dependent Magnetic Behaviors in Arrays of Ni Nanowires. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	2
137	Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer. Scientific Reports, 2017, 7, 45669.	3.3	2
138	Interfacial Perpendicular Magnetic Anisotropy in Magnetic Tunnel Junctions Comprising CoFeB with FeNiSiB Layers. Electronic Materials Letters, 2020, 16, 35-40.	2.2	2
139	Structural and magnetoresistance characteristics of CoFe/Ag/NiFe/Ag composite discontinuous multilayers. Applied Physics Letters, 2000, 77, 4199-4201.	3.3	1
140	Effect of plasma oxidation time and annealing condition on the temperature dependence of tunneling magnetoresistance. Metals and Materials International, 2003, 9, 57-59.	3.4	1
141	Analysis on giant magnetoresistive characteristics of synthetic antiferromagnet-based spin valves with modified pinned layers. IEEE Transactions on Magnetics, 2003, 39, 2399-2401.	2.1	1
142	Soft magnetic properties of sub 10 nm NiFe and Co films encapsulated with Ta or Cu. Physica Status Solidi A, 2004, 201, 1859-1861.	1.7	1
143	Growth and Magnetic Properties of CoPtAu Nanowires. IEEE Transactions on Magnetics, 2008, 44, 2726-2729.	2.1	1
144	Observation of Suppressed Interdiffusion in FeRh/FePt-Ta Bilayer Thin Films. IEEE Transactions on Magnetics, 2010, 46, 2104-2107.	2.1	1

#	Article	IF	CITATIONS
145	Magnetic domain wall motion by current injection in CoPt nanowires consisting of notches. Solid State Communications, 2012, 152, 1004-1007.	1.9	1
146	Dynamic Microcontainers as Microvacuums for Collecting Nanomaterials After Clinical Treatments. IEEE Transactions on Magnetics, 2013, 49, 3464-3467.	2.1	1
147	ZnO–Ag Composite Nanocrystals from Nanoemulsion: Synthesis, Magnetic, and Optical Properties. Applied Physics Express, 2013, 6, 063005.	2.4	1
148	Phase dependent magnetic properties of Ni–Au alloy nanowires. Materials Letters, 2014, 116, 86-90.	2.6	1
149	Efficiency of genomic DNA extraction dependent on the size of magnetic nanoclusters. Journal of Applied Physics, 2014, 115, 178512.	2.5	1
150	Localized electroporation effect on adherent cells in modified electric cell–substrate impedance sensing circuits. Applied Physics Express, 2016, 9, 107001.	2.4	1
151	Magnetic Particle Spectrometry of Fe ₃ O ₄ Multi-Granule Nanoclusters. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	1
152	CoFeSiB–Pd multilayers and co-deposited alloy films exhibiting perpendicular magnetic anisotropies after heat treatment up to 500°C. Acta Materialia, 2017, 125, 196-201.	7.9	1
153	Perpendicular Magnetic Anisotropy and Interfacial Dzyaloshinskii-Moriya Interaction in Pt/CoFeSiB Structures. IEEE Magnetics Letters, 2017, 8, 1-4.	1.1	1
154	Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process. Current Applied Physics, 2018, 18, 1235-1239.	2.4	1
155	Zinc Oxide Nanoâ€Spicules on Polylactic Acid for Superâ€Hydrophilic and Bactericidal Surfaces (Adv.) Tj ETQq1 1	0,784314 14.9	ŀrgBT /Over
156	Inorganic Hollow Nanocoils Fabricated by Controlled Interfacial Reaction and Their Electrocatalytic Properties. Small, 2021, 17, e2103575.	10.0	1
157	Interface Electronic And Magnetic Structures Of Layered Fe In Contact With MgO. Materials Research Society Symposia Proceedings, 1991, 238, 799.	0.1	O
158	MR characteristics of synthetic ferrimagnet based spin-valves with different pinning layer thickness ratios. IEEE Transactions on Magnetics, 2000, 36, 2857-2859.	2.1	0
159	Thermal and Mn diffusion behaviors of CoNbZr based spin valves with nano-oxide layers. , 0, , .		O
160	Switching characteristics of magnetic tunnel junctions with a synthetic antiferromagnetic free layer. IEEE Transactions on Magnetics, 2005, 41, 2688-2690.	2.1	0
161	Magnetization switching and tunneling magnetoresistance effects with synthetic antiferromagnet free layers consisting of amorphous CoFeSiB., 2005,,.		O
162	Switching characteristics in magnetic tunnel junctions with a synthetic antiferromagentic free layer. , 2005, , .		0

#	Article	IF	Citations
163	Magnetic properties of Fe/sub 3/O/sub 4/ nanostructures. , 2005, , .		0
164	Structural and magnetic properties of amorphous and nanocrystalline CoFeSiB thin films. , 2006, , .		0
165	Magnetotransport of lateral Py/Pt/Py spin valve device. Physica Status Solidi (B): Basic Research, 2007, 244, 4534-4537.	1.5	0
166	Magneto-Transport Characteristics of Magnetic Tunnel Junction With a Synthetic Antiferromagnetic Amorphous CoFeSiB Free Layer. IEEE Transactions on Magnetics, 2008, 44, 2598-2600.	2.1	0
167	Self-assembly of iron oxide nanoparticles mediated by phospholipids. , 2010, , .		0
168	Magnetization Reversal of Self-Assembled One-Dimensional Chains of Fe304 Nanoparticles. , 2016, , .		0
169	Perpendicular Magnetic Anisotropy of Non-Magnetic Materials/Ferromagnetic Materials/MgO Trilayer. , 2016, , .		0
170	Nanoâ€Ligands: Independent Tuning of Nanoâ€Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells (Adv. Mater. 40/2020). Advanced Materials, 2020, 32, 2070299.	21.0	0
171	Magnetic Nanocoils: Remote Control of Timeâ€Regulated Stretching of Ligandâ€Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells (Adv. Mater. 11/2021). Advanced Materials, 2021, 33, 2170084.	21.0	0
172	Spin-orbit torque efficiency in Ta or W/Ta - W/Co FeB junctions. Materials Research Express, 0, , .	1.6	0
173	Effect of Silicon Additions on the Magnetic Properties for Fe-Based Alloys. Journal of Nanoscience and Nanotechnology, 2016, 16, 11210-11213.	0.9	0
174	3 Dimensional-Printed Micro-Container with Graphene Current Collector and Manganese Oxide Thin-Film as Cathodes of Li-Batteries. Nanoscience and Nanotechnology Letters, 2016, 8, 1095-1098.	0.4	0