Alastair W Poole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2810682/publications.pdf

Version: 2024-02-01

95 papers 4,449 citations

36 h-index 110387 64 g-index

99 all docs 99 docs citations 99 times ranked 5587 citing authors

#	Article	IF	CITATIONS
1	Platelet secretion: From haemostasis to wound healing and beyond. Blood Reviews, 2015, 29, 153-162.	5.7	615
2	A SHPing tale: Perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cellular Signalling, 2005, 17, 1323-1332.	3.6	162
3	P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood, 2005, 105, 3552-3560.	1.4	154
4	Glycoprotein Ib-V-IX, a Receptor for von Willebrand Factor, Couples Physically and Functionally to the Fc Receptor Î ³ -Chain, Fyn, and Lyn to Activate Human Platelets. Blood, 1999, 94, 1648-1656.	1.4	144
5	Coordinated Membrane Ballooning and Procoagulant Spreading in Human Platelets. Circulation, 2015, 132, 1414-1424.	1.6	139
6	PKC $\hat{l}\pm$ regulates platelet granule secretion and thrombus formation in mice. Journal of Clinical Investigation, 2009, 119, 399-407.	8.2	136
7	Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood, 2004, 104, 1745-1752.	1.4	129
8	Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood, 2017, 130, 2171-2179.	1.4	125
9	PKC-interacting proteins: from function to pharmacology. Trends in Pharmacological Sciences, 2004, 25, 528-535.	8.7	123
10	Dual Regulation of Glycogen Synthase Kinase 3 (GSK3) $\hat{l}\pm\hat{l}^2$ by Protein Kinase C (PKC) $\hat{l}\pm$ and Akt Promotes Thrombin-mediated Integrin $\hat{l}\pm$ Ilb \hat{l}^2 3 Activation and Granule Secretion in Platelets. Journal of Biological Chemistry, 2013, 288, 3918-3928.	3.4	123
11	Protein kinase Cα: disease regulator and therapeutic target. Trends in Pharmacological Sciences, 2010, 31, 8-14.	8.7	106
12	PKCδ regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood, 2006, 108, 4035-4044.	1.4	99
13	Antiplatelet effects of dietary nitrate in healthy volunteers: Involvement of cGMP and influence of sex. Free Radical Biology and Medicine, 2013, 65, 1521-1532.	2.9	97
14	Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen. Journal of Biological Chemistry, 2010, 285, 23410-23419.	3.4	96
15	Distinct Clathrin-Coated Pits Sort Different G Protein-Coupled Receptor Cargo. Traffic, 2006, 7, 1420-1431.	2.7	85
16	Physical and Functional Interaction between Protein Kinase C \hat{l} and Fyn Tyrosine Kinase in Human Platelets. Journal of Biological Chemistry, 2003, 278, 24533-24541.	3.4	73
17	Vasodilator-stimulated phosphoprotein (VASP) is phosphorylated on Ser157 by protein kinase C-dependent and -independent mechanisms in thrombin-stimulated human platelets. Biochemical Journal, 2006, 393, 555-564.	3.7	72
18	Distinct Roles for Protein Kinase C Isoforms in Regulating Platelet Purinergic Receptor Function. Molecular Pharmacology, 2006, 70, 1132-1142.	2.3	67

#	Article	IF	CITATIONS
19	Transient Receptor Potential Channels Function as a Coincidence Signal Detector Mediating Phosphatidylserine Exposure. Science Signaling, 2013, 6, ra50.	3.6	67
20	Regulation of cytosolic calcium by collagen in single human platelets. British Journal of Pharmacology, 1995, 115, 101-106.	5.4	64
21	Canonical Wnt signaling negatively regulates platelet function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19836-19841.	7.1	61
22	SDF- $1\hat{l}\pm$ is a novel autocrine activator of platelets operating through its receptor CXCR4. Cellular Signalling, 2015, 27, 37-46.	3.6	60
23	Functional Interaction of Protein Kinase Cα with the Tyrosine Kinases Syk and Src in Human Platelets. Journal of Biological Chemistry, 2005, 280, 7194-7205.	3.4	58
24	Regulation of SHP-1 Tyrosine Phosphatase in Human Platelets by Serine Phosphorylation at Its C Terminus. Journal of Biological Chemistry, 2004, 279, 40475-40483.	3.4	56
25	Store-operated calcium entry and non-capacitative calcium entry have distinct roles in thrombin-induced calcium signalling in human platelets. Cell Calcium, 2011, 50, 351-358.	2.4	54
26	Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.	0.5	52
27	Interaction of Bruton's Tyrosine Kinase and Protein Kinase CÎ, in Platelets. Journal of Biological Chemistry, 2002, 277, 9958-9965.	3.4	51
28	Intracellular Trafficking, Localization, and Mobilization of Platelet-Borne Thiol Isomerases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1164-1173.	2.4	50
29	Evidence of a Role for SHP-1 in Platelet Activation by the Collagen Receptor Glycoprotein VI. Journal of Biological Chemistry, 2000, 275, 28526-28531.	3.4	49
30	Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2. Blood, 2011, 118, 416-424.	1.4	49
31	Secrets of platelet exocytosis – what do we really know about platelet secretion mechanisms?. British Journal of Haematology, 2014, 165, 204-216.	2,5	47
32	Platelet Rho GTPases–a focus on novel players, roles and relationships. Biochemical Journal, 2015, 466, 431-442.	3.7	46
33	Dysfunction of the PI3 kinase/Rap1/integrin \hat{l} ±IIb \hat{l} 23 pathway underlies ex vivo platelet hypoactivity in essential thrombocythemia. Blood, 2013, 121, 1209-1219.	1.4	44
34	Coincident regulation of PKCδin human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling. Biochemical Journal, 2007, 406, 501-509.	3.7	43
35	Membrane Ballooning in Aggregated Platelets is Synchronised and Mediates a Surge in Microvesiculation. Scientific Reports, 2017, 7, 2770.	3.3	42
36	Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis. Science Signaling, 2017, 10, .	3.6	40

3

#	Article	IF	CITATIONS
37	Thrombospondin-1 promotes hemostasis through modulation of cAMP signaling in blood platelets. Blood, 2021, 137, 678-689.	1.4	39
38	Genetic Analysis of the Role of Protein Kinase \hat{Cl} , in Platelet Function and Thrombus Formation. PLoS ONE, 2008, 3, e3277.	2.5	37
39	Phosphoinositide 3-Kinases p110 \hat{l} ± and p110 \hat{l} 2 Have Differential Roles in Insulin-Like Growth Factor-1–Mediated Akt Phosphorylation and Platelet Priming. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1681-1688.	2.4	37
40	The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling. Journal of Biological Chemistry, 2017, 292, 1691-1704.	3.4	36
41	Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels. Life Science Alliance, 2018, 1, e201800061.	2.8	36
42	RhoG Protein Regulates Platelet Granule Secretion and Thrombus Formation in Mice. Journal of Biological Chemistry, 2013, 288, 34217-34229.	3.4	35
43	Syntaxin 8 Regulates Platelet Dense Granule Secretion, Aggregation, and Thrombus Stability. Journal of Biological Chemistry, 2015, 290, 1536-1545.	3.4	33
44	Loss of the insulin receptor in murine megakaryocytes/platelets causes thrombocytosis and alterations in IGF signalling. Cardiovascular Research, 2015, 107, 9-19.	3.8	31
45	Reciprocal feedback regulation of insulin receptor and insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochemical Journal, 2002, 368, 875-884.	3.7	30
46	Critical roles for the actin cytoskeleton and cdc42 in regulating platelet integrin $\langle b \rangle \hat{l} \pm \langle b \rangle \langle sub \rangle 2 \langle sub \rangle \langle b \rangle \hat{l}^2 \langle b \rangle \langle sub \rangle 1 \langle sub \rangle$. Platelets, 2008, 19, 199-210.	2.3	29
47	The snake venom toxin alboaggregin-A activates glycoprotein VI. Blood, 2001, 97, 3989-3991.	1.4	28
48	Platelet signaling–A primer. Journal of Veterinary Emergency and Critical Care, 2012, 22, 5-29.	1.1	28
49	Protein Kinase CÎ, Negatively Regulates Store-independent Ca2+ Entry and Phosphatidylserine Exposure Downstream of Glycoprotein VI in Platelets. Journal of Biological Chemistry, 2010, 285, 19865-19873.	3.4	27
50	Unravelling the different functions of protein kinase C isoforms in platelets. FEBS Letters, 2011, 585, 1711-1716.	2.8	27
51	Protein Kinase Cα (PKCα) Regulates Bone Architecture and Osteoblast Activity. Journal of Biological Chemistry, 2014, 289, 25509-25522.	3.4	27
52	Blood platelets stimulate cancer extravasation through TGF \hat{I}^2 -mediated downregulation of PRH/HHEX. Oncogenesis, 2020, 9, 10.	4.9	27
53	Temporal contribution of the platelet body and balloon to thrombin generation. Haematologica, 2017, 102, e379-e381.	3.5	27
54	Characterization of a novel focal adhesion kinase inhibitor in human platelets. Biochemical and Biophysical Research Communications, 2009, 389, 198-203.	2.1	26

#	Article	IF	CITATIONS
55	Platelet dense granule secretion defects may obscure α-granule secretion mechanisms: evidence from Munc13-4–deficient platelets. Blood, 2015, 125, 3034-3036.	1.4	26
56	Aquaporin-1 regulates platelet procoagulant membrane dynamics and in vivo thrombosis. JCI Insight, 2018, 3, .	5.0	26
57	The Small GTPase Rif Is Dispensable for Platelet Filopodia Generation in Mice. PLoS ONE, 2013, 8, e54663.	2.5	25
58	Do platelets promote cardiac recovery after myocardial infarction: roles beyond occlusive ischemic damage. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1043-H1048.	3.2	24
59	Mouse Platelet Ral GTPases Control P-Selectin Surface Expression, Regulating Platelet–Leukocyte Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 787-800.	2.4	20
60	Evidence that the purinergic receptor P2Y12potentiates platelet shape change by a Rho kinase-dependent mechanism. Platelets, 2005, 16, 415-429.	2.3	18
61	Loss of the mitochondrial kinase PINK1 does not alter platelet function. Scientific Reports, 2018, 8, 14377.	3.3	18
62	WNTâ€3a modulates platelet function by regulating small GTPase activity. FEBS Letters, 2012, 586, 2267-2272.	2.8	17
63	PKCÎ \pm negatively regulatesin vitroproplatelet formation andin vivoplatelet production in mice. Platelets, 2014, 25, 62-68.	2.3	17
64	GPIb potentiates GPVI-induced responses in human platelets. Platelets, 2004, 15, 207-214.	2.3	16
65	PKCÎ, in platelet activation. Blood, 2009, 114, 489-491.	1.4	16
66	Platelets Protect Cardiomyocytes from Ischemic Damage. TH Open, 2017, 01, e24-e32.	1.4	16
67	Bcl-xL–inhibitory BH3 mimetic ABT-737 depletes platelet calcium stores. Blood, 2012, 119, 4337-4338.	1.4	15
68	Small GTPases in platelet membrane trafficking. Platelets, 2019, 30, 31-40.	2.3	15
69	Protein kinase C alpha enhances sodium–calcium exchange during store-operated calcium entry in mouse platelets. Cell Calcium, 2010, 48, 333-340.	2.4	14
70	Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice. Blood Advances, 2018, 2, 3627-3636.	5.2	14
71	The role of individual protein kinase C isoforms in mouse mast cell function and their targeting by the immunomodulatory parasitic worm product, ES-62. Immunology Letters, 2015, 168, 31-40.	2.5	13
72	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	2.4	12

#	Article	IF	Citations
73	Epigenetic Regulation of <i>F2RL3</i> Associates With Myocardial Infarction and Platelet Function. Circulation Research, 2022, 130, 384-400.	4.5	10
74	Antibody cross-linking of human platelet P-selectin induces calcium entry by a mechanism dependent upon Fcl ³ receptor IIA. Thrombosis and Haemostasis, 2004, 92, 598-605.	3.4	9
75	Opposing Roles of GSK3α and GSK3β Phosphorylation in Platelet Function and Thrombosis. International Journal of Molecular Sciences, 2021, 22, 10656.	4.1	9
76	Absence of Platelet Phenotype in Mice Lacking the Motor Protein Myosin Va. PLoS ONE, 2013, 8, e53239.	2.5	7
77	Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets. Cellular Signalling, 2019, 59, 34-40.	3.6	7
78	Carbonic Anhydrase Inhibitors suppress platelet procoagulant responses and in vivo thrombosis. Platelets, 2020, 31, 853-859.	2.3	7
79	Using Zebrafish (Danio rerio) to Assess Gene Function in Thrombus Formation. Methods in Molecular Biology, 2012, 788, 305-319.	0.9	7
80	Loss of the exocyst complex component EXOC3 promotes hemostasis and accelerates arterial thrombosis. Blood Advances, 2021, 5, 674-686.	5.2	6
81	Comment on "Platelet-Derived Nucleotides Promote Tumor Cell Transendothelial Migration and Metastasis via P2Y2 Receptor―by Schumacher etÂal Cancer Cell, 2013, 24, 287.	16.8	5
82	Platelet Dense-Granule Secretion: The [³ H]-5-HT Secretion Assay., 2004, 272, 095-096.		4
83	Aquaporins in platelet function. Platelets, 2021, 32, 895-901.	2.3	4
84	Focusing on the role of platelets in immune defence against invading pathogens. Platelets, 2015, 26, 285-285.	2.3	3
85	Letter by Agbani et al Regarding Article, "Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface― Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e287-e289.	2.4	2
86	Platelet Membrane Procoagulation in Preeclampsia. Blood, 2020, 136, 7-7.	1.4	2
87	Platelet Syk is a HIT target. Blood, 2011, 117, 2083-2084.	1.4	1
88	Platelet Secretion. , 2017, , 637-649.		1
89	Tetherin/BST2, a physiologically and therapeutically relevant regulator of platelet receptor signalling. Blood Advances, 2021, 5, 1884-1898.	5.2	1
90	Activation of glycoprotein GP lb-V-IX, a receptor for von Willebrand factor, initiates a cascade of tyrosine phosphorylation signalling events in human platelets. Biochemical Society Transactions, 1999, 27, A120-A120.	3.4	0

ALASTAIR W POOLE

#	Article	IF	CITATIONS
91	Cracking the platelet WIP. Blood, 2009, 114, 4611-4612.	1.4	O
92	Introducing a new type of article for <i>Platelets</i> : Spotlight articles. Platelets, 2010, 21, 313-313.	2.3	0
93	Is JAK2V617F finally off the hook?. Blood, 2014, 124, 992-993.	1.4	0
94	Editorial. Platelets, 2016, 27, 496-496.	2.3	0
95	Platelets: Their Role in Atherogenesis and Thrombosis in Coronary Artery Disease. , 0, , 343-363.		0