T-C Lau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2810527/publications.pdf

Version: 2024-02-01

234 papers 9,529 citations

54 h-index 82 g-index

255 all docs 255 docs citations

255 times ranked

8812 citing authors

#	Article	IF	CITATIONS
1	Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO ₂ with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center. Journal of the American Chemical Society, 2015, 137, 10918-10921.	13.7	294
2	Highly Efficient and Selective Photocatalytic CO ₂ Reduction by Iron and Cobalt Quaterpyridine Complexes. Journal of the American Chemical Society, 2016, 138, 9413-9416.	13.7	276
3	Efficient Visible-Light-Driven CO ₂ Reduction by a Cobalt Molecular Catalyst Covalently Linked to Mesoporous Carbon Nitride. Journal of the American Chemical Society, 2020, 142, 6188-6195.	13.7	199
4	Molecular Radical Cations of Oligopeptides. Journal of Physical Chemistry B, 2000, 104, 3393-3397.	2.6	198
5	A cobalt(ii) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction. Energy and Environmental Science, 2012, 5, 7903.	30.8	186
6	A Robust Palladium(II)–Porphyrin Complex as Catalyst for Visible Light Induced Oxidative CH Functionalization. Chemistry - A European Journal, 2013, 19, 5654-5664.	3.3	184
7	Chemical and Visibleâ€Lightâ€Driven Water Oxidation by Iron Complexes at pHâ€7–9: Evidence for Dualâ€Ad Intermediates in Ironâ€Catalyzed Water Oxidation. Angewandte Chemie - International Edition, 2013, 52, 1789-1791.	active 13.8	171
8	A Carbon Nitride/Fe Quaterpyridine Catalytic System for Photostimulated CO ₂ -to-CO Conversion with Visible Light. Journal of the American Chemical Society, 2018, 140, 7437-7440.	13.7	160
9	Selectivity control of CO versus HCOOâ^' production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nature Catalysis, 2019, 2, 801-808.	34.4	153
10	A Photocaged, Water-Oxidizing, and Nucleolus-Targeted Pt(IV) Complex with a Distinct Anticancer Mechanism. Journal of the American Chemical Society, 2020, 142, 7803-7812.	13.7	144
11	Enhancing Extracellular Electron Transfer of <i>Shewanella oneidensis</i> MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. Environmental Science & Echnology, 2017, 51, 5082-5089.	10.0	141
12	Highly Selective Molecular Catalysts for the CO ₂ -to-CO Electrochemical Conversion at Very Low Overpotential. Contrasting Fe vs Co Quaterpyridine Complexes upon Mechanistic Studies. ACS Catalysis, 2018, 8, 3411-3417.	11.2	141
13	Removal of phosphate from water by a highly selective La(III)-chelex resin. Chemosphere, 2007, 69, 289-294.	8.2	131
14	Highly Electrophilic (Salen)ruthenium(VI) Nitrido Complexes. Journal of the American Chemical Society, 2004, 126, 478-479.	13.7	111
15	Efficient Catalytic Oxidation of Alkanes by Lewis Acid/[Os ^{VI} (N)Cl ₄] ^{â^²} Using Peroxides as Terminal Oxidants. Evidence for a Metal-Based Active Intermediate. Journal of the American Chemical Society, 2008, 130, 10821-10827.	13.7	102
16	Formation of molecular radical cations of enkephalin derivatives via collision-induced dissociation of electrospray-generated copper (II) complex ions of amines and peptides. Journal of the American Society for Mass Spectrometry, 2001, 12, 1114-1119.	2.8	101
17	A Hybrid Co Quaterpyridine Complex/Carbon Nanotube Catalytic Material for CO ₂ Reduction in Water. Angewandte Chemie - International Edition, 2018, 57, 7769-7773.	13.8	101
18	Photoassisted Fenton Degradation of Polystyrene. Environmental Science & Environmental Science & Photoassisted Fenton Degradation of Polystyrene. Environmental En	10.0	99

#	Article	IF	CITATIONS
19	Novel Luminescent Tricarbonylrhenium(I) Polypyridine Tyramine-Derived Dipicolylamine Complexes as Sensors for Zinc(II) and Cadmium(II) Ions. Organometallics, 2009, 28, 4297-4307.	2.3	97
20	Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Research, 2019, 164, 114935.	11.3	95
21	Relative silver(I) ion binding energies of α-amino acids: A determination by means of the kinetic method. Journal of the American Society for Mass Spectrometry, 1998, 9, 760-766.	2.8	93
22	Reactivity of Nitrido Complexes of Ruthenium(VI), Osmium(VI), and Manganese(V) Bearing Schiff Base and Simple Anionic Ligands. Accounts of Chemical Research, 2014, 47, 427-439.	15.6	91
23	Ferromagnetic Ordering in a Diamondâ€Like Cyanoâ€Bridged Mn ^{II} Ru ^{III} Bimetallic Coordination Polymer. Angewandte Chemie - International Edition, 2001, 40, 3031-3033.	13.8	89
24	Epoxidation of alkenes and oxidation of alcohols with hydrogen peroxide catalyzed by a manganese(v) nitrido complex. Chemical Communications, 2011, 47, 4273.	4.1	89
25	BF3-Activated Oxidation of Alkanes by MnO4 Journal of the American Chemical Society, 2006, 128, 2851-2858.	13.7	88
26	Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution. Chemosphere, 2016, 165, 1-9.	8.2	87
27	Direct Aziridination of Alkenes by a Cationic (Salen)ruthenium(VI) Nitrido Complex. Journal of the American Chemical Society, 2004, 126, 15336-15337.	13.7	86
28	Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2.M induced by Pb2+. Nucleic Acids Research, 2012, 40, 4229-4236.	14.5	86
29	Synthesis of nitrogen-doped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light. Chemical Engineering Journal, 2013, 226, 123-130.	12.7	86
30	Synthesis and Spectroscopic Studies of Cyclometalated Pt(II) Complexes Containing a Functionalized Cyclometalating Ligand, 2-Phenyl-6-(1H-pyrazol-3-yl)-pyridine. Inorganic Chemistry, 2007, 46, 3603-3612.	4.0	78
31	Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Marine Pollution Bulletin, 2016, 105, 393-402.	5.0	77
32	Ferromagnetic Ordering and Metamagnetism in Malonate Bridged 3D Diamond-like and Honeycomb-like Networks:  [Cu(mal)(DMF)]n and {[Cu(mal)(0.5pyz)]·H2O}n (mal = Malonate Dianion, DMF =) Tj ETQq0 0	0 ng 8 T/Ov	ver lo ck 10 Tf
33	Dual Homogeneous and Heterogeneous Pathways in Photo- and Electrocatalytic Hydrogen Evolution with Nickel(II) Catalysts Bearing Tetradentate Macrocyclic Ligands. ACS Catalysis, 2015, 5, 356-364.	11.2	75
34	A chiral iron-sexipyridine complex as a catalyst for alkene epoxidation with hydrogen peroxide. Chemical Communications, 2008, , 3801.	4.1	74
35	Cerium(IV)â€Driven Water Oxidation Catalyzed by a Manganese(V)–Nitrido Complex. Angewandte Chemie - International Edition, 2015, 54, 5246-5249.	13.8	74
36	Photocatalytic Conversion of CO ₂ to CO by a Copper(II) Quaterpyridine Complex. ChemSusChem, 2017, 10, 4009-4013.	6.8	74

#	Article	IF	Citations
37	Ruthenium catalysed oxidation of alkanes with alkylhydroperoxides. Journal of the Chemical Society Chemical Communications, 1988, , 1406.	2.0	73
38	Oneâ€Dimensional Ferromagnetically Coupled Bimetallic Chains Constructed with <i>trans</i> \$\frac{1}{2}\$ (Ru(acac) ₂ (CN) ₂] ^{\$\frac{2}{2}\$ (Sup>: Syntheses, Structures, Magnetic Properties, and Density Functional Theoretical Study. Chemistry - A European Journal, 2010, 16, 3524-3535.}	3.3	73
39	Sequencing of Argentinated Peptides by Means of Electrospray Tandem Mass Spectrometry. Analytical Chemistry, 1999, 71, 2364-2372.	6.5	71
40	Heterometallic MIIRuIII2Compounds Constructed fromtrans-[Ru(Salen)(CN)2]-andtrans-[Ru(Acac)2(CN)2] Synthesis, Structures, Magnetic Properties, and Density Functional Theoretical Study. Inorganic Chemistry, 2005, 44, 6579-6590.	4.0	71
41	Stoichiometric and Catalytic Oxidations of Alkanes and Alcohols Mediated by Highly Oxidizing Rutheniumâ^'Oxo Complexes Bearing 6,6â€~-Dichloro-2,2â€~-bipyridine. Journal of Organic Chemistry, 2000, 65, 7996-8000.	3.2	70
42	Efficient Chemical and Visibleâ€Lightâ€Driven Water Oxidation using Nickel Complexes and Salts as Precatalysts. ChemSusChem, 2014, 7, 127-134.	6.8	70
43	Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. Journal of the American Chemical Society, 2019, 141, 3755-3766.	13.7	69
44	Catalytic Water Oxidation by Ruthenium(II) Quaterpyridine (qpy) Complexes: Evidence for Ruthenium(III) qpyâ€ <i>N</i> , <i>N</i> 倲′′â€dioxide as the Real Catalysts. Angewandte Chemie - Internation, 2014, 53, 14468-14471.	ontal.8	68
45	Characterization of the product ions from the collision-induced dissociation of argentinated peptides. Journal of the American Society for Mass Spectrometry, 2001, 12, 163-175.	2.8	65
46	Hybridization of Molecular and Graphene Materials for CO ₂ Photocatalytic Reduction with Selectivity Control. Journal of the American Chemical Society, 2021, 143, 8414-8425.	13.7	64
47	General Synthesis of (Salen)ruthenium(III) Complexes via NÂ-Â-Â-N Coupling of (Salen)ruthenium(VI) Nitrides. Inorganic Chemistry, 2008, 47, 5936-5944.	4.0	60
48	Ligandâ€Accelerated Activation of Strong CH Bonds of Alkanes by a (Salen)ruthenium(VI)–Nitrido Complex. Angewandte Chemie - International Edition, 2012, 51, 9101-9104.	13.8	60
49	Tuning the reactivities of ruthenium–oxo complexes with robust ligands. A ruthenium(IV)–oxo complex of 6,6′-dichloro-2,2′-bipyridine as an active oxidant for stoichiometric and catalytic organic oxidation. Journal of the Chemical Society Dalton Transactions, 1991, , 1901-1907.	1.1	59
50	FeCl3-Activated Oxidation of Alkanes by [Os(N)O3] Journal of the American Chemical Society, 2004, 126, 14921-14929.	13.7	59
51	Copper-catalyzed amination of alkenes and ketones by phenylhydroxylamine. New Journal of Chemistry, 2000, 24, 859-863.	2.8	57
52	Lewis acid-activated oxidation of alcohols by permanganate. Chemical Communications, 2011, 47, 7143.	4.1	57
53	Molecular quaterpyridine-based metal complexes for small molecule activation: water splitting and CO ₂ reduction. Chemical Society Reviews, 2020, 49, 7271-7283.	38.1	57
54	An  artificial mussel' for monitoring heavy metals in marine environments. Environmental Pollution, 2007, 145, 104-110.	7.5	56

#	Article	IF	CITATIONS
55	Electrospray tandem mass spectrometry of polyoxoanions. Journal of the Chemical Society Chemical Communications, 1995, , 877.	2.0	55
56	Kinetics and Mechanisms of the Oxidation of Phenols by a trans-Dioxoruthenium(VI) Complex. Inorganic Chemistry, 2003, 42, 1225-1232.	4.0	55
57	Electro- and photocatalytic hydrogen generation in acetonitrile and aqueous solutions by a cobalt macrocyclic Schiff-base complex. International Journal of Hydrogen Energy, 2011, 36, 11640-11645.	7.1	55
58	Antiferromagnetic ordering in a novel five-connected 3D polymer {Cu2(2,5-Me2pyz)[N(CN)2]4}n (2,5-Me2pyz2,5-dimethylpyrazine)Electronic supplementary information (ESI) available: plot of the temperature dependence of the ac susceptibility (Fig. S1). See http://www.rsc.org/suppdata/nj/b1/b111012h/. New Journal of Chemistry, 2002, 26, 523-525.	2.8	54
59	Reactivity of MIIMetal-Substituted Derivatives of Pig Purple Acid Phosphatase (Uteroferrin) with Phosphate. Inorganic Chemistry, 2002, 41, 5787-5794.	4.0	53
60	2D LnIIIRullI2Compounds Constructed fromtrans-[Ru(acac)2(CN)2] Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry, 2006, 45, 6756-6760.	4.0	50
61	Photochemical and electrochemical catalytic reduction of CO ₂ with NHC-containing dicarbonyl rhenium(<scp>i</scp>) bipyridine complexes. Dalton Transactions, 2016, 45, 14524-14529.	3.3	50
62	Structures of b and a Product Ions from the Fragmentation of Argentinated Peptides. Journal of the American Chemical Society, 1998, 120, 7302-7309.	13.7	49
63	Model reactions for nitrogen fixation. Photo-induced formation and X-ray crystal structure of [Os2(NH3)8(MeCN)2(N2)]5+ from [Os VI (NH3)4N]3+. Journal of the Chemical Society Chemical Communications, 1989, , 1883.	2.0	48
64	Homogeneous [Ru ^{III} (Me ₃ tacn)Cl ₃]â€Catalyzed Alkene <i>cis</i> â€Dihydroxylation with Aqueous Hydrogen Peroxide. Chemistry - an Asian Journal, 2008, 3, 70-77.	3.3	48
65	Kinetics and Mechanism of Conformational Changes in a G-Quadruplex of Thrombin-Binding Aptamer Induced by Pb ²⁺ . Journal of Physical Chemistry B, 2011, 115, 13051-13056.	2.6	48
66	Osmium(vi) complexes as a new class of potential anti-cancer agents. Chemical Communications, 2011, 47, 2140.	4.1	46
67	Osmium(vi) nitrido complexes bearing azole heterocycles: a new class of antitumor agents. Chemical Science, 2012, 3, 1582.	7.4	46
68	Cytotoxic (salen)ruthenium(<scp>iii</scp>) anticancer complexes exhibit different modes of cell death directed by axial ligands. Chemical Science, 2017, 8, 6865-6870.	7.4	46
69	Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. Journal of Hazardous Materials, 2018, 344, 585-592.	12.4	46
70	Mechanism of alcohol oxidation by trans-dioxoruthenium(VI): the effect of driving force on reactivity. Journal of the Chemical Society Dalton Transactions, 1992, , 1551.	1.1	44
71	Oxidation of alkanes by barium ruthenate in acetic acid: catalysis by Lewis acids. Journal of the Chemical Society Chemical Communications, 1993, , 766.	2.0	44
72	Osmium(VI) Nitrido and Osmium(IV) Phosphoraniminato Complexes Containing Schiff Base Ligands. Inorganic Chemistry, 1999, 38, 6181-6186.	4.0	44

#	Article	IF	CITATIONS
73	High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor. Journal of Hazardous Materials, 2020, 388, 121753.	12.4	44
74	Syntheses and structures of novel heterobimetallic Cu(II)–Au(I) complexes Cu(cyclen)[Au(CN)2]2 and Cu(pyz)[Au(CN)2]2. Dalton Transactions RSC, 2000, , 629-631.	2.3	43
75	Catalytic oxidation of water and alcohols by a robust iron(<scp>iii</scp>) complex bearing a cross-bridged cyclam ligand. Chemical Communications, 2015, 51, 12189-12192.	4.1	43
76	Highly Efficient Photocatalytic Reduction of CO ₂ to CO by In Situ Formation of a Hybrid Catalytic System Based on Molecular Iron Quaterpyridine Covalently Linked to Carbon Nitride. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
77	Electrospray tandem mass spectrometry of oxo complexes of chromium, manganese and tuthenium. Journal of the Chemical Society Chemical Communications, 1994, , 1487.	2.0	41
78	Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Enzyme and Microbial Technology, 2016, 95, 236-241.	3.2	40
79	Activation of manganese nitrido complexes by Brønsted and Lewis acids. Crystal structure and asymmetric alkene aziridination of a chiral salen manganese nitrido complex. Journal of the Chemical Society Dalton Transactions, 1999, , 2411-2414.	1.1	39
80	Kinetics and Mechanism of the Oxidation of Alkylaromatic Compounds by atrans-Dioxoruthenium(VI) Complex. Inorganic Chemistry, 2003, 42, 8011-8018.	4.0	38
81	A ruthenium(IV) oxo complex that contains a tertiary diamine ligand. Journal of the Chemical Society Dalton Transactions, 1990, , 967.	1.1	37
82	C–N Bond Cleavage of Anilines by a (Salen)ruthenium(VI) Nitrido Complex. Journal of the American Chemical Society, 2013, 135, 5533-5536.	13.7	37
83	A molecular noble metal-free system for efficient visible light-driven reduction of CO ₂ to CO. Dalton Transactions, 2019, 48, 9596-9602.	3.3	37
84	Innovative â€~Artificial Mussels' technology for assessing spatial and temporal distribution of metals in Goulburn–Murray catchments waterways, Victoria, Australia: Effects of climate variability (dry vs.) Tj ETQq0 0 0) r g∄T o/Ov	erl ssc k 10 Tf 5
85	Slow magnetic relaxation in a mononuclear 8-coordinate Fe(<scp>ii</scp>) complex. Chemical Communications, 2017, 53, 1474-1477.	4.1	36
86	Synthesis and structures of dioxoruthenium(VI) complexes. Oxo transfer from trans-O2Ru(py)2(O2CR)2. Inorganic Chemistry, 1990, 29, 4190-4195.	4.0	35
87	Dalton communications. Lewis-acid catalysed oxidation of alkanes by chromate and permanganate. Journal of the Chemical Society Dalton Transactions, 1995, , 695.	1.1	35
88	Mechanisms of oxidation by trans-dioxoruthenium(VI) complexes containing macrocyclic tertiary amine ligands. Coordination Chemistry Reviews, 2007, 251, 2238-2252.	18.8	35
89	Synthesis and antitumor activity of a series of osmium(vi) nitrido complexes bearing quinolinolato ligands. Chemical Communications, 2013, 49, 9980.	4.1	35
90	Effects of morphology and exposed facets of α-Fe ₂ O ₃ nanocrystals on photocatalytic water oxidation. RSC Advances, 2015, 5, 52210-52216.	3.6	35

#	Article	IF	Citations
91	Ca ²⁺ â€Induced Oxygen Generation by FeO ₄ ^{2â^³} at pHâ€9 – 10 Angewandte Chemie - International Edition, 2016, 55, 3012-3016.). 13.8	35
92	Facile N···N Coupling of Manganese(V) Imido Species. Journal of the American Chemical Society, 2007, 129, 803-809.	13.7	34
93	Field validation, in Scotland and Iceland, of the artificial mussel for monitoring trace metals in temperate seas. Marine Pollution Bulletin, 2008, 57, 790-800.	5.0	34
94	Reaction of a (Salen)ruthenium(VI) Nitrido Complex with Thiols. Câ^'H Bond Activation by (Salen)ruthenium(IV) Sulfilamido Species. Inorganic Chemistry, 2010, 49, 73-81.	4.0	34
95	Highly Efficient Alkane Oxidation Catalyzed by [Mn ^V (N)(CN) ₄] ^{2â€"} . Evidence for [Mn ^{VII} (N)(O)(CN) ₄] ^{2â€"} as an Active Intermediate. Journal of the American Chemical Society, 2014, 136, 7680-7687.	13.7	34
96	Mechanism of Câ€"H bond oxidation by a monooxoruthenium(V) complex. Journal of the Chemical Society Dalton Transactions, 1991, , 1259-1263.	1.1	33
97	Dual anti-angiogenic and cytotoxic properties of ruthenium(iii) complexes containing pyrazolato and/or pyrazole ligands. Dalton Transactions, 2009, , 10712.	3.3	33
98	New binuclear double-stranded manganese helicates as catalysts for alkene epoxidation. Dalton Transactions, 2010, 39, 9469.	3.3	33
99	Reaction of an Osmium(VI) Nitrido Complex with Cyanide: Formation and Reactivity of an Osmium(III) Hydrogen Cyanamide Complex. Chemistry - A European Journal, 2011, 17, 13044-13051.	3.3	33
100	Formation of $\hat{1}/4$ -dinitrogen (salen)osmium complexes via ligand-induced N \hat{a} $^{-}$ N coupling of (salen)osmium(vi) nitrides. Dalton Transactions, 2010, 39, 11163.	3.3	32
101	pH universal Ru@N-doped carbon catalyst for efficient and fast hydrogen evolution. Catalysis Science and Technology, 2020, 10, 4405-4411.	4.1	32
102	Lewis acid activated oxidation of alkanes by barium ferrate. New Journal of Chemistry, 2000, 24, 587-590.	2.8	31
103	Solid-phase extraction-fluorimetric high performance liquid chromatographic determination of domoic acid in natural seawater mediated by an amorphous titania sorbent. Analytica Chimica Acta, 2007, 583, 111-117.	5.4	31
104	Solvent Effects on the Oxidation of Ru ^{IV} O to ORu ^{VI} O by MnO ₄ ⁻ . Hydrogen-Atom versus Oxygen-Atom Transfer. Journal of the American Chemical Society, 2007, 129, 13646-13652.	13.7	30
105	A novel tricyanoruthenium(iii) building block for the construction of bimetallic coordination polymers. Chemical Communications, 2010, 46, 6102.	4.1	30
106	Organic Photosensitizers for Catalytic Solar Fuel Generation. Energy & 2021, 35, 18888-18899.	5.1	30
107	Metal-nitrido photo-oxidants: synthesis, photophysics, and photochemistry of [Os VI (NH3)4(N)](X)3(X) Tj ETQq1	1 0.7843 2.0	14 rgBT /O\ 28
108	Electronic effects of bis(acetylacetone) in ruthenium(II) and ruthenium(III) complexes. Inorganic Chemistry, 1991, 30, 2921-2928.	4.0	28

#	Article	IF	CITATIONS
109	Kinetics and Mechanism of the Oxidation of Ascorbic Acid in Aqueous Solutions by a <i>trans</i> -Dioxoruthenium(VI) Complex. Inorganic Chemistry, 2009, 48, 400-406.	4.0	28
110	Facile Direct Insertion of Nitrosonium Ion (NO+) into a Rutheniumâ^'Aryl Bond. Organometallics, 2011, 30, 1311-1314.	2.3	28
111	Ru single atoms and nanoclusters on highly porous N-doped carbon as a hydrogen evolution catalyst in alkaline solutions with ultrahigh mass activity and turnover frequency. Journal of Materials Chemistry A, 2021, 9, 12196-12202.	10.3	28
112	Sequencing of Argentinated Peptides by Means of Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry. Analytical Chemistry, 2002, 74, 2072-2082.	6.5	27
113	Photochemical nitrogenation of alkanes and arenes by a strongly luminescent osmium(VI) nitrido complex. Communications Chemistry, 2019, 2, .	4.5	26
114	Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of platinum(II) complexes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116543119.	7.1	26
115	Oxidation of Nitrite by a trans-Dioxoruthenium(VI) Complex:  Direct Evidence for Reversible Oxygen Atom Transfer. Journal of the American Chemical Society, 2006, 128, 14669-14675.	13.7	25
116	Four-Electron Oxidation of Phenols to $\langle i \rangle p \langle i \rangle$ -Benzoquinone Imines by a (Salen)ruthenium(VI) Nitrido Complex. Journal of the American Chemical Society, 2016, 138, 5817-5820.	13.7	25
117	Kinetics and Mechanism of the Oxidation of Hydroquinones by a trans-Dioxoruthenium(VI) Complex. Inorganic Chemistry, 2006, 45, 315-321.	4.0	24
118	Cyano-bridged molecular squares: Synthesis and structures of [Ni(cyclen)]2[Pt(CN)4]2·6H2O, [Ni(cyclen)]2[Ni(CN)4]2·6H2O and [Mn(cyclen)]2[Ni(CN)4]2·6H2O. Polyhedron, 2006, 25, 1256-1262.	2.2	24
119	Proton-Bridged Dinuclear (salen)Ru Carbene Complexes: Synthesis, Structure, and Reactivity of {[(salchda)Ru╀(OR)(CH╀Ph2)]2·H}+. Organometallics, 2008, 27, 324-326.	2.3	24
120	Synthesis and Photophysical Properties of Ruthenium(II) Isocyanide Complexes Containing 8-Quinolinolate Ligands. Organometallics, 2009, 28, 5709-5714.	2.3	24
121	Reaction of a (Salen)ruthenium(VI) Nitrido Complex with Isocyanide. Inorganic Chemistry, 2009, 48, 3080-3086.	4.0	24
122	<i>trans</i> -[Os ^{III} (salen)(CN) ₂] ^{â^'} : A New Paramagnetic Building Block for the Construction of Molecule-Based Magnetic Materials. Inorganic Chemistry, 2010, 49, 1607-1614.	4.0	24
123	A Hybrid Co Quaterpyridine Complex/Carbon Nanotube Catalytic Material for CO ₂ Reduction in Water. Angewandte Chemie, 2018, 130, 7895-7899.	2.0	24
124	A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: Implications on pollution monitoring and public health risk. Environmental Pollution, 2018, 243, 197-205.	7.5	24
125	Molecular Electrochemical Catalysis of the CO ₂ -to-CO Conversion with a Co Complex: A Cyclic Voltammetry Mechanistic Investigation. Organometallics, 2019, 38, 1280-1285.	2.3	24

Comparison of metal accumulation between †Artificial Mussel' and natural mussels (Mytilus) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	CITATIONS
127	Mechanism of Water Oxidation by Ferrate(VI) at pHâ€7–9. Chemistry - A European Journal, 2018, 24, 18735-18742.	3.3	23
128	An Iron Quaterpyridine Complex as Precursor for the Electrocatalytic Reduction of CO ₂ to Methane. ChemSusChem, 2019, 12, 4500-4505.	6.8	23
129	Oxidation of C2, C3and higher alkanes by a ruthenium–oxo system. Journal of the Chemical Society Chemical Communications, 1995, , 943-944.	2.0	22
130	Preparation of nitrogen doped K2Nb4O11 with high photocatalytic activity for degradation of organic pollutants. Applied Catalysis A: General, 2011, 402, 23-30.	4.3	22
131	Functionalization of Alkynes by a (Salen)ruthenium(VI) Nitrido Complex. Angewandte Chemie - International Edition, 2014, 53, 8463-8466.	13.8	22
132	Efficient adsorption, removal and recovery of phosphate and nitrate from water by a novel lanthanum(<scp>iii</scp>)-Dowex M4195 polymeric ligand exchanger. Environmental Science: Water Research and Technology, 2018, 4, 421-427.	2.4	22
133	Microbial selenite reduction coupled to anaerobic oxidation of methane. Science of the Total Environment, 2019, 669, 168-174.	8.0	22
134	Intraionic, interligand proton transfer in collision-activated macrocyclic complex ions of nickel and copper., 1998, 33, 811-818.		21
135	A novel heterobimetallic Ni(II)–Ag(I) cyano-bridged coordination polymer incorporating Ag···Ag interactions: {[Ni(cyclen)][Ag(CN)2]}[Ag(CN)2]. New Journal of Chemistry, 2000, 24, 733-734.	2.8	21
136	Addition of Carbenes to an Osmium(VI) Nitride Complex. European Journal of Inorganic Chemistry, 2005, 2005, 773-778.	2.0	21
137	Photoinduced water oxidation catalyzed by a double-helical dicobalt(<scp>ii</scp>) sexipyridine complex. Chemical Communications, 2014, 50, 14956-14959.	4.1	21
138	Zero-valent iron nanoparticles with sustained high reductive activity for carbon tetrachloride dechlorination. RSC Advances, 2015, 5, 54497-54504.	3.6	21
139	A Highly Reactive Sevenâ€Coordinate Osmium(V) Oxo Complex: [Os ^V (O)(qpy)(pic)Cl] ²⁺ . Angewandte Chemie - International Edition, 2016, 55, 288-291.	13.8	21
140	Highly Selective and Efficient Ring Hydroxylation of Alkylbenzenes with Hydrogen Peroxide and an Osmium(VI) Nitrido Catalyst. Angewandte Chemie - International Edition, 2017, 56, 12260-12263.	13.8	21
141	A highly active and robust iron quinquepyridine complex for photocatalytic CO ₂ reduction in aqueous acetonitrile solution. Chemical Communications, 2020, 56, 6249-6252.	4.1	21
142	Electrocatalytic and Photocatalytic Reduction of Carbon Dioxide by Earthâ€Abundant Bimetallic Molecular Catalysts. ChemPhysChem, 2021, 22, 1835-1843.	2.1	21
143	Synthesis, crystal structure and electrospray ionisation mass spectrometry of a novel one-dimensional cyano-bridged Ni(II)–Au(I) polymer. New Journal of Chemistry, 2000, 24, 765-769.	2.8	20
144	Facile Nucleophilic Addition to Salophen Coordinated to Nitridoosmium(VI). Journal of the American Chemical Society, 2001, 123, 12720-12721.	13.7	20

#	Article	IF	Citations
145	The synthesis, structures and magnetic properties of polynuclear Rulll–3d (3d = MnII/III, NiII, CuII) compounds based on [RullI(Q)2(CN)2]â". Dalton Transactions, 2013, 42, 3876.	3.3	20
146	Photocatalytic oxidation of alkenes and alcohols in water by a manganese(<scp>v</scp>) nitrido complex. Chemical Communications, 2016, 52, 9271-9274.	4.1	20
147	Intermediates in the Oxidative Degradation of a Rutheniumâ€Bound 2,2′â€Bipyridyl–Phenoxy Ligand during Catalytic Water Oxidation. ChemCatChem, 2018, 10, 501-504.	3.7	20
148	Syntheses, crystal structures and magnetic properties of a series of luminescent lanthanide complexes containing neutral tetradentate phenanthroline-amide ligands. Inorganic Chemistry Frontiers, 2019, 6, 1442-1452.	6.0	20
149	Photocatalytic and aerobic oxidation of saturated alkanes by a neutral luminescent trans-dioxoosmium(vi) complex [OsO2(CN)2(dpphen)]. Chemical Communications, 1997, , 1443-1444.	4.1	19
150	A recyclable polymer-supported ruthenium catalyst for the oxidative degradation of bisphenol A in water using hydrogen peroxide. New Journal of Chemistry, 2011, 35, 149-155.	2.8	19
151	Synthesis, Structures, and Photophysical Properties of Ruthenium(II) Quinolinolato Complexes. Organometallics, 2012, 31, 7101-7108.	2.3	19
152	A novel approach for estimating the removal efficiencies of endocrine disrupting chemicals and heavy metals in wastewater treatment processes. Marine Pollution Bulletin, 2016, 112, 53-57.	5.0	19
153	Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. Journal of Hazardous Materials, 2021, 403, 123611.	12.4	19
154	General synthesis of dioxoruthenium(VI) complexes. Structure and reactivity of trans-dioxobis(acetato)bis(pyridine)ruthenium(VI). Journal of the Chemical Society Chemical Communications, 1987, , 798.	2.0	18
155	Catalytic oxidation of alkanes by a (salen)osmium(<scp>vi</scp>) nitrido complex using H ₂ O ₂ as the terminal oxidant. Chemical Communications, 2015, 51, 13686-13689.	4.1	18
156	Cr(V)–Cr(III) in-situ transition promotes ROS generation to achieve efficient cancer therapy. Biomaterials, 2021, 276, 120991.	11.4	18
157	Chromium-Centered Imido Group Transfer. Inorganic Chemistry, 1995, 34, 4271-4274.	4.0	17
158	Novel heterobimetallic ruthenium(iii)–cobalt(ii) compounds constructed from trans-[RullI(Q)2(CN)2]Ⱂ (Q = 8-quinolinolato): synthesis, structures and magnetic properties. Chemical Communications, 2011, 47, 8694.	4.1	17
159	Catalytic reactions of chlorite with a polypyridylruthenium(<scp>ii</scp>) complex: disproportionation, chlorine dioxide formation and alcohol oxidation. Chemical Communications, 2012, 48, 1102-1104.	4.1	17
160	Tunable Luminescent Properties of Tricyanoosmium Nitrido Complexes Bearing a Chelating O^N Ligand. Inorganic Chemistry, 2020, 59, 4406-4413.	4.0	16
161	Field-induced slow magnetic relaxation in low-spin $\langle i \rangle S \langle i \rangle = 1/2$ mononuclear osmium($\langle scp \rangle v \langle scp \rangle$) complexes. Dalton Transactions, 2020, 49, 4084-4092.	3.3	16
162	Synthesis and reactivity of osmium (VI) nitrido complexes containing pyridine-carboxylato ligands. Inorganica Chimica Acta, 2009, 362, 3576-3582.	2.4	15

#	Article	IF	Citations
163	Dual Pathways in the Oxidation of an Osmium(III) Guanidine Complex. Formation of Osmium(VI) Nitrido and Osmium Nitrosyl Complex. Inorganic Chemistry, 2017, 56, 2022-2028.	4.0	15
164	Generation and Reactivity of a Oneâ€Electronâ€Oxidized Manganese(V) Imido Complex with a Tetraamido Macrocyclic Ligand. Chemistry - A European Journal, 2019, 25, 12895-12899.	3.3	15
165	Luminescent Nitridoosmium(VI) Complexes with Aryl- and Alkylacetylide Ligands:  Spectroscopic Properties and Crystal Structures. Organometallics, 2003, 22, 315-320.	2.3	14
166	8-Quinolinolato complexes of ruthenium(II) and (III). Inorganica Chimica Acta, 2009, 362, 1149-1157.	2.4	14
167	Oxygen evolution from BF3/MnO4â^'. Chemical Communications, 2011, 47, 4159.	4.1	14
168	Aerobic Oxidation of an Osmium(III) N-Hydroxyguanidine Complex To Give Nitric Oxide. Inorganic Chemistry, 2016, 55, 5056-5061.	4.0	14
169	Synthesis, structures and photophysical properties of luminescent cyanoruthenate(<scp>ii</scp>) complexes with hydroxylated bipyridine and phenanthroline ligands. RSC Advances, 2016, 6, 87389-87399.	3.6	14
170	Ruthenium and Osmium: High Oxidation States. , 2003, , 733-847.		13
171	Coordination Polymers Constructed from [Mn(N)(CN)4]2–: Synthesis, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2008, 2008, 158-163.	2.0	13
172	Kinetics and Mechanisms of the Oxidation of Iodide and Bromide in Aqueous Solutions by a trans-Dioxoruthenium(VI) Complex. Inorganic Chemistry, 2008, 47, 6771-6778.	4.0	13
173	Binuclear (salen)osmium phosphinidine and phosphiniminato complexes. Dalton Transactions, 2011, 40, 1938.	3.3	13
174	Ruthenium-catalyzed oxidation of alcohols by bromate in water. New Journal of Chemistry, 2013, 37, 1707.	2.8	13
175	Acid-Base Behaviour in the Absorption and Emission Spectra of Ruthenium(II) Complexes with Hydroxy-Substituted Bipyridine and Phenanthroline Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 3641-3648.	2.0	13
176	A novel triazidoruthenium(iii) building block for the construction of polynuclear compounds. Dalton Transactions, 2012, 41, 5794.	3.3	12
177	Heavy metal contamination along the China coastline: A comprehensive study using Artificial Mussels and native mussels. Journal of Environmental Management, 2016, 180, 238-246.	7.8	12
178	Hydrogen atom transfer reactions of ferrate(<scp>vi</scp>) with phenols and hydroquinone. Correlation of rate constants with bond strengths and application of the Marcus cross relation. Dalton Transactions, 2016, 45, 70-73.	3.3	12
179	Synthesis and reactivity of an osmium(iii) aminoguanidine complex. Dalton Transactions, 2019, 48, 11404-11410.	3.3	12
180	Visible light-induced oxidative <i>N</i> -dealkylation of alkylamines by a luminescent osmium(<scp>vi</scp>) nitrido complex. Chemical Science, 2021, 12, 14494-14498.	7.4	12

#	Article	IF	Citations
181	trans-Dichlorotetrapyridineruthenium(II). Acta Crystallographica Section C: Crystal Structure Communications, 1994, 50, 1406-1407.	0.4	11
182	Luminescent Carbonyl Hydrido Ruthenium(II) Diimine Coordination Compounds: Structural, Photophysical, and Electrochemical Properties. European Journal of Inorganic Chemistry, 2016, 2016, 3892-3899.	2.0	11
183	Efficient photocatalytic water reduction by a cobalt(<scp>ii</scp>) tripodal iminopyridine complex. Catalysis Science and Technology, 2018, 8, 307-313.	4.1	11
184	Differences in metal profiles revealed by native mussels and artificial mussels in Sarıçay Stream, Turkey: implications for pollution monitoring. Marine and Freshwater Research, 2018, 69, 1372.	1.3	11
185	Structure and Reactivity of a Manganese(VI) Nitrido Complex Bearing a Tetraamido Macrocyclic Ligand. Journal of the American Chemical Society, 2021, 143, 15863-15872.	13.7	11
186	Structure and Reactivity of One- and Two-Electron Oxidized Manganese(V) Nitrido Complexes Bearing a Bulky Corrole Ligand. Journal of the American Chemical Society, 2022, 144, 7588-7593.	13.7	11
187	Oxidation of ascorbic acid by a (salen)ruthenium(<scp>vi</scp>) nitrido complex in aqueous solution. Chemical Communications, 2014, 50, 15799-15802.	4.1	10
188	Room Temperature Aerobic Peroxidation of Organic Substrates Catalyzed by Cobalt(III) Alkylperoxo Complexes. Journal of the American Chemical Society, 2021, 143, 14445-14450.	13.7	10
189	G-quadruplex formation and sequence effect on the assembly of G-rich oligonucleotides induced by Pb2+ ions. Soft Matter, 2012, 8, 7017.	2.7	9
190	Metallosupramolecular Ni ₂ L ₃ and Ni ₄ L ₆ complexes of bis-bidentate pyridine-containing ligands: X-ray structures and catalytic proton reduction. Dalton Transactions, 2015, 44, 13087-13092.	3.3	9
191	Kinetics and mechanism of the oxidation of sulfite by trans-[Ru(tmc)O2]2+ (tmcâ€=â€1,4,8,11-tetramethyl-1,4,8,11- tetraazacyclotetradecane). Journal of the Chemical Society Dalton Transactions, 1997, , 313-316.	1.1	8
192	Kinetics and mechanisms of the oxidation of hypophosphite and phosphite with trans-[RuVI(L)(O)2]2+ (Lâ€=â€1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane). Dalton Transactions RSC, 200 17-20.	002,.3	8
193	A hydrogen-atom transfer mechanism in the oxidation of alcohols by [FeO ₄] ^{2â°'} in aqueous solution. Dalton Transactions, 2018, 47, 240-245.	3.3	8
194	Slow magnetic relaxation in structurally similar mononuclear 8-coordinate Fe(<scp>ii</scp>) and Fe(<scp>iii</scp>) compounds. Chemical Communications, 2021, 57, 781-784.	4.1	8
195	Acetate and electricity generation from methane in conductive fiber membrane- microbial fuel cells. Science of the Total Environment, 2022, 804, 150147.	8.0	8
196	Slow magnetic relaxation in high-coordinate Co(<scp>ii</scp>) and Fe(<scp>ii</scp>) compounds bearing neutral tetradentate ligands. Dalton Transactions, 2021, 50, 15327-15335.	3.3	8
197	Structural and mechanistic studies of co-ordination compounds. Part 37. Ligand-substitution kinetics of some halogeno tetra-amine complexes of cobalt(III), ruthenium(II), and ruthenium(III). Journal of the Chemical Society Dalton Transactions, 1983, , 1641.	1.1	7
198	Kinetics and mechanism of the oxidation of iodide by trans-dioxoruthenium (VI). Journal of the Chemical Society Dalton Transactions, 1994, , 3091.	1.1	7

#	Article	IF	Citations
199	Electrospray Tandem Mass Spectrometry of Nitrido and Imido Complexes. Inorganic Chemistry, 1996, 35, 2169-2170.	4.0	7
200	A novel trinuclear copper(II) complex bridged by tren: [Cu3(tren)4][Pt(CN)4]3·2H2O. New Journal of Chemistry, 1999, 23, 1049-1050.	2.8	7
201	A novel one-dimensional Ni(ii)–Fe(ii) polymer containing μ3-cyanides: [Ni(cyclen)]2[Fe(CN)6]·8H2O. New Journal of Chemistry, 2002, 26, 1099-1101.	2.8	7
202	NillRull and CullRull Coordination Polymers Constructed from [Ru(CN)6]4?. European Journal of Inorganic Chemistry, 2005, 2005, 364-370.	2.0	7
203	A Highly Active and Robust Solid-Supported Polypyridylruthenium(II) Catalyst for the Oxidation of Alcohols and Alkenes by Cerium(IV) and Periodate in Water. Industrial & Engineering Chemistry Research, 2011, 50, 12288-12292.	3.7	7
204	Ca ²⁺ â€Induced Oxygen Generation by FeO ₄ ^{2â°'} at pHâ€9 â€" 10 Angewandte Chemie, 2016, 128, 3064-3068.). 2.0	7
205	Oxidation of hydroquinones by a (salen)ruthenium(<scp>vi</scp>) nitrido complex. Chemical Communications, 2016, 52, 11430-11433.	4.1	7
206	Efficient pollutant degradation via non-radical dominated pathway by self-regenerative Ru(bpy)32+/peroxydisulfate under visible light. Chemical Engineering Journal, 2020, 400, 125993.	12.7	7
207	Synthesis, Crystal Structures, and Magnetic Properties of Heterodimetallic RullI-3d Coordination Compounds Based on a Meridional Tricyanoruthenium(III) Building Block. European Journal of Inorganic Chemistry, 2015, 2015, 1065-1073.	2.0	6
208	Rational design of Ag@Ag-Bi-KBa2Ta5O15 nanocomposites as efficient plasmonic photocatalysts for degradation of organic pollutants in water under visible light. Applied Catalysis A: General, 2015, 496, 17-24.	4.3	6
209	Cooperative activating effects of metal ion and Brønsted acid on a metal oxo species. Chemical Science, 2021, 12, 632-638.	7.4	6
210	Catalytic water oxidation by an <i>in situ</i> generated ruthenium nitrosyl complex bearing a bipyridine-bis(alkoxide) ligand. Dalton Transactions, 2021, 50, 12316-12323.	3.3	6
211	Highly Efficient Photocatalytic Reduction of CO ₂ to CO by In Situ Formation of a Hybrid Catalytic System Based on Molecular Iron Quaterpyridine Covalently Linked to Carbon Nitride. Angewandte Chemie, 2022, 134, .	2.0	6
212	Addition of [CH(CN)2]â^' and [TCNE]Ë™â^' to RuVlî€,N bearing 8-quinolinolato ligands. Chemical Communications, 2010, 46, 7575.	4.1	5
213	Oxygen Atom Transfer from a trans-Dioxoruthenium(VI) Complex to Nitric Oxide. Chemistry - A European Journal, 2012, 18, 138-144.	3.3	5
214	Structural and mechanistic studies of co-ordination compounds. Part 32. Different photochemical pathways of some trans-dihalogenobis(ethylenediamine)ruthenium(III) cations: ligand-field versus ligand-to-metal charge-transfer excited states. Journal of the Chemical Society Dalton Transactions, 1982, , 531.	1.1	4
215	Synthesis of La-doped Ag1.4K0.6Ta4O11 nanocomposites as efficient photocatalysts for hydrogen production and organic pollutants degradation. Applied Catalysis A: General, 2013, 467, 335-341.	4.3	4
216	Kinetics and Mechanism of the Reaction of a Ruthenium(VI) Nitrido Complex with HSO ₃ ^{â^²} and SO ₃ ^{2â^²} in Aqueous Solution. Chemistry - A European Journal, 2016, 22, 10754-10758.	3.3	4

#	Article	IF	CITATIONS
217	Roles of Co Dopants in Electrocatalytic Hydrogen Evolution by N-Rich Carbon Nanotubes Grafted on Carbon Layers. ACS Applied Nano Materials, 2021, 4, 11830-11840.	5.0	4
218	Facile C–N bond cleavage of primary aliphatic amines by (salen)ruthenium(<scp>vi</scp>) nitrido complexes. Dalton Transactions, 2022, 51, 5404-5408.	3.3	4
219	Structural and mechanistic studies of co-ordination compounds. Part 33. Inner-sphere vs. outer-sphere mechanisms in the reductions of some trans-dianiono(tetramine)ruthenium(III) cations by chromium(II) and vanadium(II). Journal of the Chemical Society Dalton Transactions, 1982, , 865.	1.1	3
220	Electron-transfer reactions and the self-exchange rate of the perruthenate(VII)–ruthenate(VI) couple. Journal of the Chemical Society Dalton Transactions, 1995, , 2221-2223.	1.1	3
221	Kinetics and mechanisms of the reduction of a cis-dioxoruthenium(vi) complex by [Ni(tacn)2]2+ and [Fe(H2O)6]2+. Dalton Transactions RSC, 2002, , 2697.	2.3	3
222	Proton-Coupled O-Atom Transfer in the Oxidation of HSO ₃ ^{â€"} by the Ruthenium Oxo Complex <i>trans</i> -[Ru ^{VI} (TMC)(O) ₂] ²⁺ (TMC =) Tj ETQq0 0 0 rg	BT ADo verlo	ck 3 0 Tf 50 53
223	Oxidative C-O bond cleavage of dihydroxybenzenes and conversion of coordinated cyanide to carbonyl by a luminescent Os(VI) cyanonitrido complex. Chemical Communications, 0, , .	4.1	3
224	Structural and mechanistic studies of co-ordination compounds. Part 31. The chromium(II) reduction of some trans-tetra-aminedichloro-ruthenium(III) cations. Journal of the Chemical Society Dalton Transactions, 1981, , 2556.	1.1	2
225	New tricyanoiron(III) building blocks for the construction of molecule-based magnets. Science China Chemistry, 2010, 53, 2106-2111.	8.2	2
226	Oxidation of Alkanes by Periodate Using a Mn $<$ sup $>$ V $<$ /sup $>$ Nitrido Complex as Catalyst. Chemistry - an Asian Journal, 2016, 11, 2846-2848.	3.3	2
227	Reduction of RuVl≡N to Rulll—NH3 by Cysteine in Aqueous Solution. Inorganic Chemistry, 2018, 57, 5850-5858.	4.0	2
228	trans -Dichloro Tetramine Complexes of Ruthenium(III). Inorganic Syntheses, 2007, , 164-167.	0.3	1
229	Frontispiece: Ca ²⁺ â€Induced Oxygen Generation by FeO ₄ ^{2â^'} at pHâ€9 â€" 10. Angewandte Chemie - International Edition, 2016, 55, .	13.8	1
230	Hydrogen atom transfer in the oxidation of alkylbenzenesulfonates by ferrate(vi) in aqueous solutions. Dalton Transactions, 2021, 50, 715-721.	3.3	1
231	Ruthenium and Osmium: High Oxidation States. ChemInform, 2004, 35, no.	0.0	0
232	Frontispiz: Ca ²⁺ â€Induced Oxygen Generation by FeO ₄ ^{2â^'} at pHâ€9 â€" 10. Angewandte Chemie, 2016, 128, .	2.0	0
233	Highly Selective and Efficient Ring Hydroxylation of Alkylbenzenes with Hydrogen Peroxide and an Osmium(VI) Nitrido Catalyst. Angewandte Chemie, 2017, 129, 12428-12431.	2.0	0
234	Oxidation of Hypophosphorous Acid by a Ruthenium(VI) Nitrido Complex in Aqueous Acidic Solution. Evidence for a Proton-Coupled N-Atom Transfer Mechanism. Inorganic Chemistry, 2022, 61, 10567-10574.	4.0	0