Matthias Scherer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2809914/publications.pdf

Version: 2024-02-01

567281 610901 52 752 15 24 citations h-index g-index papers 55 55 55 326 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CDO pricing with nested Archimedean copulas. Quantitative Finance, 2011, 11, 775-787.	1.7	71
2	Lévy-frailty copulas. Journal of Multivariate Analysis, 2009, 100, 1567-1585.	1.0	64
3	Constructing hierarchical Archimedean copulas with Lévy subordinators. Journal of Multivariate Analysis, 2010, 101, 1428-1433.	1.0	52
4	Reparameterizing Marshallâ \in "Olkin copulas with applications to sampling. Journal of Statistical Computation and Simulation, 2011, 81, 59-78.	1.2	37
5	Capturing parameter risk with convex risk measures. European Actuarial Journal, 2013, 3, 97-132.	1.1	31
6	A TRACTABLE MULTIVARIATE DEFAULT MODEL BASED ON A STOCHASTIC TIME-CHANGE. International Journal of Theoretical and Applied Finance, 2009, 12, 227-249.	0.5	24
7	-extendible copulas. Journal of Multivariate Analysis, 2012, 110, 151-160.	1.0	24
8	Financial Engineering with Copulas Explained. , 2014, , .		23
9	Analyzing the effect of low interest rates on the surplus participation of life insurance policies with different annual interest rate guarantees. European Actuarial Journal, 2015, 5, 11-28.	1.1	23
10	A note on first-passage times of continuously time-changed Brownian motion. Statistics and Probability Letters, 2012, 82, 165-172.	0.7	21
11	Exchangeable exogenous shock models. Bernoulli, 2016, 22, .	1.3	20
12	Multivariate Hierarchical Copulas with Shocks. Methodology and Computing in Applied Probability, 2010, 12, 681-694.	1.2	17
13	Default models based on scale mixtures of Marshall-Olkin copulas: properties and applications. Metrika, 2013, 76, 179-203.	0.8	17
14	Characterization of extendible distributions with exponential minima via processes that are infinitely divisible with respect to time. Extremes, 2014, 17, 77-95.	1.0	17
15	Bivariate extreme-value copulas with discrete Pickands dependence measure. Extremes, 2011, 14, 311-324.	1.0	14
16	A comprehensive model for cyber risk based on marked point processes and its application to insurance. European Actuarial Journal, 2022, 12, 33-85.	1.1	14
17	Shot-noise driven multivariate default models. European Actuarial Journal, 2012, 2, 161-186.	1.1	13
18	Multivariate geometric distributions, (logarithmically) monotone sequences, and infinitely divisible laws. Journal of Multivariate Analysis, 2013, 115, 457-480.	1.0	13

#	Article	IF	CITATIONS
19	Copulas, credit portfolios, and the broken heart syndrome. Dependence Modeling, 2018, 6, 114-130.	0.5	13
20	Parametric model risk and power plant valuation. Energy Economics, 2016, 59, 423-434.	12.1	11
21	CIID Frailty Models and Implied Copulas. Lecture Notes in Statistics, 2013, , 201-230.	0.2	11
22	What makes dependence modeling challenging? Pitfalls and ways to circumvent them. Statistics and Risk Modeling, $2013, 30, .$	1.0	9
23	Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach. Statistics and Risk Modeling, 2015, 32, 177-195.	1.0	8
24	Efficiently sampling exchangeable Cuadras–Augé copulas in high dimensions. Information Sciences, 2009, 179, 2872-2877.	6.9	7
25	Extendibility of Marshall–Olkin distributions and inverse Pascal triangles. Brazilian Journal of Probability and Statistics, 2013, 27, .	0.4	7
26	On the calibration of distortion risk measures to bid-ask prices. Quantitative Finance, 2014, 14, 1217-1228.	1.7	7
27	Modeling Recovery Rates of Small- and Medium-Sized Entities in the US. Mathematics, 2020, 8, 1856.	2.2	7
28	Subordinators which are infinitely divisible w.r.t. time: Construction, properties, and simulation of max-stable sequences and infinitely divisible laws. Alea, 2019, 16, 997.	0.7	7
29	Sampling Exchangeable and Hierarchical Marshall-Olkin Distributions. Communications in Statistics - Theory and Methods, 2013, 42, 619-632.	1.0	6
30	Efficiently pricing double barrier derivatives in stochastic volatility models. Review of Derivatives Research, 2014, 17, 191-216.	0.8	6
31	Markov multi-variate survival indicators for default simulation as a new characterization of the Marshall–Olkin law. Statistics and Probability Letters, 2016, 114, 60-66.	0.7	6
32	Reconstructing the topology of financial networks from degree distributions and reciprocity. Journal of Multivariate Analysis, 2019, 172, 210-222.	1.0	6
33	The Pickands representation of survival Marshall–Olkin copulas. Statistics and Probability Letters, 2010, 80, 357-360.	0.7	5
34	On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions. Dependence Modeling, 2015, 3, .	0.5	5
35	Membership testing for Bernoulli and tail-dependence matrices. Journal of Multivariate Analysis, 2018, 168, 240-260.	1.0	5
36	Two Novel Characterizations of Self-Decomposability on the Half-Line. Journal of Theoretical Probability, 2017, 30, 365-383.	0.8	4

#	Article	IF	Citations
37	A probabilistic view on semilinear copulas. Information Sciences, 2020, 512, 258-276.	6.9	4
38	Model Risk and Uncertainty—Illustrated with Examples from Mathematical Finance. , 2014, , 279-306.		4
39	A Multivariate Default Model with Spread and Event Risk. Applied Mathematical Finance, 2014, 21, 51-83.	1.2	3
40	My introduction to copulas. Dependence Modeling, 2017, 5, 88-98.	0.5	3
41	Emil J. Gumbel's last course on the "Statistical theory of extreme values― a conversation with Tuncel M. Yegulalp. Extremes, 2018, 21, 97-113.	1.0	3
42	Geostatistical modeling of dependent credit spreads: Estimation of large covariance matrices and imputation of missing data. Journal of Banking and Finance, 2020, 118, 105897.	2.9	3
43	On the structure of exchangeable extreme-value copulas. Journal of Multivariate Analysis, 2020, 180, 104670.	1.0	3
44	A Survey of Dynamic Representations and Generalizations of the Marshall–Olkin Distribution. Springer Proceedings in Mathematics and Statistics, 2015, , 1-13.	0.2	3
45	Exogenous shock models: analytical characterization and probabilistic construction. Metrika, 2019, 82, 931-959.	0.8	2
46	The Mean of Marshall–Olkin-Dependent Exponential Random Variables. Springer Proceedings in Mathematics and Statistics, 2015, , 33-50.	0.2	2
47	Modeling the evolution of implied CDO correlations. Financial Markets and Portfolio Management, 2010, 24, 289-308.	2.0	1
48	Insurance applications of dependence modeling. Dependence Modeling, 2020, 8, 93-106.	0.5	1
49	Modeling credit portfolio derivatives, including both a default and a prepayment feature. Applied Stochastic Models in Business and Industry, 2013, 29, 479-495.	1.5	0
50	Modeling Influenza-Like Illness Activity in the United States. North American Actuarial Journal, 2017, 21, 323-342.	1.4	0
51	Distribuzioni con marginali assegnate: Gli Inizi Un'intervista Con Giorgio Dall'Aglio. Lettera Matematica Pristem, 2017, 101, 4-16.	0.0	0
52	The standard formula of Solvency II: a critical discussion. European Actuarial Journal, 2020, 11, 3.	1.1	0