
Yi-Ping Hsueh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2809861/publications.pdf Version: 2024-02-01

YLPING HOUFH

#	Article	IF	CITATIONS
1	Protein synthesis as a modifiable target for autismâ€related dendritic spine pathophysiologies. FEBS Journal, 2022, 289, 2282-2300.	2.2	7
2	Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN. Journal of Cell Biology, 2022, 221, .	2.3	44
3	Dietary zinc supplementation rescues fear-based learning and synaptic function in the Tbr1+/â^ mouse model of autism spectrum disorders. Molecular Autism, 2022, 13, 13.	2.6	9
4	Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models. Science Translational Medicine, 2022, 14, eabm0899.	5.8	68
5	Phase separation and zinc-induced transition modulate synaptic distribution and association of autism-linked CTTNBP2 and SHANK3. Nature Communications, 2022, 13, 2664.	5.8	17
6	Social behaviors and contextual memory of Vcp mutant mice are sensitive to nutrition and can be ameliorated by amino acid supplementation. IScience, 2021, 24, 101949.	1.9	4
7	<i>Trichoderma reesei</i> Rad51 tolerates mismatches in hybrid meiosis with diverse genome sequences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
8	TLR7 and IL-6 differentially regulate the effects of rotarod exercise on the transcriptomic profile and neurogenesis to influence anxiety and memory. IScience, 2021, 24, 102384.	1.9	5
9	Transcriptomic Analysis and C-Terminal Epitope Tagging Reveal Differential Processing and Signaling of Endogenous TLR3 and TLR7. Frontiers in Immunology, 2021, 12, 686060.	2.2	3
10	Editorial: Autism Signaling Pathways. Frontiers in Cellular Neuroscience, 2021, 15, 760994.	1.8	0
11	Merlin cooperates with neurofibromin and Spred1 to suppress the Ras–Erk pathway. Human Molecular Genetics, 2021, 29, 3793-3806.	1.4	7
12	Macro photography with Lighsheet Illumination Enables Whole Expanded Brain Imaging with Single-cell Resolution. Discoveries, 2021, 9, e133.	1.5	2
13	Autism-linked mutations of CTTNBP2 reduce social interaction and impair dendritic spine formation via diverse mechanisms. Acta Neuropathologica Communications, 2020, 8, 185.	2.4	19
14	KLHL17/Actinfilin, a brain-specific gene associated with infantile spasms and autism, regulates dendritic spine enlargement. Journal of Biomedical Science, 2020, 27, 103.	2.6	6
15	CTTNBP2 Controls Synaptic Expression of Zinc-Related Autism-Associated Proteins and Regulates Synapse Formation and Autism-like Behaviors. Cell Reports, 2020, 31, 107700.	2.9	36
16	Vcp Overexpression and Leucine Supplementation Increase Protein Synthesis and Improve Fear Memory and Social Interaction of Nf1 Mutant Mice. Cell Reports, 2020, 31, 107835.	2.9	19
17	Anterior Commissure Regulates Neuronal Activity of Amygdalae and Influences Locomotor Activity, Social Interaction and Fear Memory in Mice. Frontiers in Molecular Neuroscience, 2020, 13, 47.	1.4	12
18	The evolutionarily conserved function of TBR1 in controlling the size of anterior commissure in human and mouse brains. European Journal of Human Genetics, 2020, 28, 997-998.	1.4	1

#	Article	IF	CITATIONS
19	TLR7 Is Critical for Anti-Viral Humoral Immunity to EV71 Infection in the Spinal Cord. Frontiers in Immunology, 2020, 11, 614743.	2.2	7
20	Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain. Journal of Cell Biology, 2020, 219, .	2.3	12
21	Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. Journal of Biomedical Science, 2019, 26, 90.	2.6	39
22	Interhemispheric Connectivity Potentiates the Basolateral Amygdalae and Regulates Social Interaction and Memory. Cell Reports, 2019, 29, 34-48.e4.	2.9	17
23	Synaptic Formation, Neural Circuits and Neurodevelopmental Disorders Controlled by Signaling, Translation, and Epigenetic Regulation. Developmental Neurobiology, 2019, 79, 2-7.	1.5	10
24	Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice. Molecular Autism, 2019, 10, 5.	2.6	42
25	PINK1 activates PKA to promote VCPâ€P47 complexâ€mediated dendritogenesis. FASEB Journal, 2019, 33, 662.10.	0.2	0
26	PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons. ENeuro, 2018, 5, ENEURO.0466-18.2018.	0.9	34
27	RNase A Promotes Proliferation of Neuronal Progenitor Cells via an ERK-Dependent Pathway. Frontiers in Molecular Neuroscience, 2018, 11, 428.	1.4	7
28	Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. Journal of Cell Biology, 2018, 217, 2727-2742.	2.3	56
29	The involvement of endoplasmic reticulum formation and protein synthesis efficiency in VCP- and ATL1-related neurological disorders. Journal of Biomedical Science, 2018, 25, 2.	2.6	16
30	Blimp-1-Mediated Pathway Promotes Type I IFN Production in Plasmacytoid Dendritic Cells by Targeting to Interleukin-1 Receptor-Associated Kinase M. Frontiers in Immunology, 2018, 9, 1828.	2.2	13
31	Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain, Behavior, and Immunity, 2018, 72, 101-113.	2.0	30
32	SARM1 (Sterile Alpha and TIR Motif-Containing Protein 1). , 2018, , 4841-4846.		0
33	<scp>TLR</scp> 3 downregulates expression of schizophrenia gene <i>Disc1</i> via <scp>MYD</scp> 88 to control neuronal morphology. EMBO Reports, 2017, 18, 169-183.	2.0	38
34	Deletion of the Inflammasome Sensor <i>Aim2</i> Mitigates AÎ ² Deposition and Microglial Activation but Increases Inflammatory Cytokine Expression in an Alzheimer Disease Mouse Model. NeuroImmunoModulation, 2017, 24, 29-39.	0.9	47
35	Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors. Human Molecular Genetics, 2017, 26, 3922-3934.	1.4	37
36	Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice. Journal of Psychiatry and Neuroscience, 2017, 42, 37-47.	1.4	26

#	ŧ	Article	IF	CITATIONS
3	37	The Involvement of Neuron-Specific Factors in Dendritic Spinogenesis: Molecular Regulation and Association with Neurological Disorders. Neural Plasticity, 2016, 2016, 1-10.	1.0	19
3	8	AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Scientific Reports, 2016, 6, 32405.	1.6	39
3	9	VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nature Communications, 2016, 7, 11020.	5.8	60
4	ю	Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Scientific Reports, 2016, 6, 33592.	1.6	23
4	1	SARM1 (Sterile Alpha and TIR Motif-Containing Protein 1). , 2016, , 1-6.		Ο
4	2	Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders. Frontiers in Neuroscience, 2015, 9, 406.	1.4	41
4	13	Tâ€Brainâ€1 – A Potential Master Regulator in Autism Spectrum Disorders. Autism Research, 2015, 8, 412-426.	2.1	51
4	4	The microRNAs Let7c and miR21 are recognized by neuronal Toll-like receptor 7 to restrict dendritic growth of neurons. Experimental Neurology, 2015, 269, 202-212.	2.0	45
4	15	Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation. Nature Communications, 2015, 6, 7168.	5.8	101
4	6	Sarm1 deficiency impairs synaptic function and leads to behavioral deficits, which can be ameliorated by an mGluR allosteric modulator. Frontiers in Cellular Neuroscience, 2014, 8, 87.	1.8	34
4	7	Neuronal excitation upregulates Tbr1, a high-confidence risk gene of autism, mediating Grin2b expression in the adult brain. Frontiers in Cellular Neuroscience, 2014, 8, 280.	1.8	51
4	8	Neuronally-expressed Sarm1 regulates expression of inflammatory and antiviral cytokines in brains. Innate Immunity, 2014, 20, 161-172.	1.1	40
4	9	Calcium influx and postsynaptic proteins coordinate the dendritic filopodiumâ€spine transition. Developmental Neurobiology, 2014, 74, 1011-1029.	1.5	25
5	50	Sarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice. Brain, Behavior, and Immunity, 2014, 37, 142-151.	2.0	38
5	51	Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality. Nature Neuroscience, 2014, 17, 240-247.	7.1	157
5	52	Cortactin binding protein 2 increases microtubule stability and regulates dendritic arborization. Journal of Cell Science, 2014, 127, 3521-34.	1.2	32
5	53	Innate immune responses regulate morphogenesis and degeneration: roles of Toll-like receptors and Sarm1 in neurons. Neuroscience Bulletin, 2014, 30, 645-654.	1.5	39
5	54	Novel Object Recognition for Studying Memory in Mice. Bio-protocol, 2014, 4, .	0.2	12

#	Article	IF	CITATIONS
55	Two-choice Digging Task in Mouse for Studying the Cognitive Flexibility. Bio-protocol, 2014, 4, .	0.2	1
56	TLR7 Negatively Regulates Dendrite Outgrowth through the Myd88-c-Fos-IL-6 Pathway. Journal of Neuroscience, 2013, 33, 11479-11493.	1.7	60
57	Calcium/calmodulinâ€dependent serine protein kinase (<scp>CASK</scp>) is a new intracellular modulator of <scp>P</scp> 2 <scp>X</scp> 3 receptors. Journal of Neurochemistry, 2013, 126, 102-112.	2.1	17
58	Neuron-specific regulation on F-actin cytoskeletons. Communicative and Integrative Biology, 2012, 5, 334-336.	0.6	10
59	Cortactin-Binding Protein 2 Modulates the Mobility of Cortactin and Regulates Dendritic Spine Formation and Maintenance. Journal of Neuroscience, 2012, 32, 1043-1055.	1.7	75
60	CTTNBP2, but not CTTNBP2NL, regulates dendritic spinogenesis and synaptic distribution of the striatin–PP2A complex. Molecular Biology of the Cell, 2012, 23, 4383-4392.	0.9	59
61	From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation. Journal of Biomedical Science, 2012, 19, 33.	2.6	22
62	A Versatile Player. Journal of Molecular Biology, 2011, 412, 1-2.	2.0	4
63	Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. Journal of Clinical Investigation, 2011, 121, 4820-4837.	3.9	70
64	Targeted Deletion of CASK-Interacting Nucleosome Assembly Protein Causes Higher Locomotor and Exploratory Activities. NeuroSignals, 2011, 19, 128-141.	0.5	29
65	Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. Journal of Cell Biology, 2011, 193, 769-784.	2.3	120
66	Xâ€linked mental retardation gene CASK interacts with Bcl11A/CTIP1 and regulates axon branching and outgrowth. Journal of Neuroscience Research, 2010, 88, 2364-2373.	1.3	37
67	CASK phosphorylation by PKA regulates the protein–protein interactions of CASK and expression of the NMDAR2b gene. Journal of Neurochemistry, 2010, 112, 1562-1573.	2.1	25
68	Bcl11A/CTIP1 mediates the effect of the glutamate receptor on axon branching and dendrite outgrowth. Journal of Neurochemistry, 2010, 114, 1381-1392.	2.1	26
69	Calcium/calmodulinâ€dependent serine protein kinase and mental retardation. Annals of Neurology, 2009, 66, 438-443.	2.8	74
70	CASK point mutation regulates protein–protein interactions and NR2b promoter activity. Biochemical and Biophysical Research Communications, 2009, 382, 219-222.	1.0	24
71	Bcl11A/CTIP1 regulates expression of DCC and MAP1b in control of axon branching and dendrite outgrowth. Molecular and Cellular Neurosciences, 2009, 42, 195-207.	1.0	56
72	Neurofibromin interacts with CRMP-2 and CRMP-4 in rat brain. Biochemical and Biophysical Research Communications, 2008, 369, 747-752.	1.0	28

#	Article	IF	CITATIONS
73	SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. Journal of Cell Biology, 2008, 182, 141-155.	2.3	89
74	Mice Deficient in Collapsin Response Mediator Protein-1 Exhibit Impaired Long-Term Potentiation and Impaired Spatial Learning and Memory. Journal of Neuroscience, 2007, 27, 2513-2524.	1.7	85
75	Cdk5 Promotes Synaptogenesis by Regulating the Subcellular Distribution of the MAGUK Family Member CASK. Neuron, 2007, 56, 823-837.	3.8	111
76	Cytoplasmic distribution of T-box transcription factor Tbr-1 in adult rodent brain. Journal of Chemical Neuroanatomy, 2007, 33, 124-130.	1.0	16
77	Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin–PKA–Ena/VASP pathway. Journal of Cell Biology, 2007, 177, 829-841.	2.3	128
78	Expression of zinc finger transcription factor Bcl11A/Evi9/CTIP1 in rat brain. Journal of Neuroscience Research, 2007, 85, 1628-1636.	1.3	19
79	Neurofibromin signaling and synapses. Journal of Biomedical Science, 2007, 14, 461-466.	2.6	14
80	CASK associates with glutamate receptor interacting protein and signaling molecules. Biochemical and Biophysical Research Communications, 2006, 351, 771-776.	1.0	21
81	Neural activity- and development-dependent expression and distribution of CASK interacting nucleosome assembly protein in mouse brain. Journal of Comparative Neurology, 2006, 494, 606-619.	0.9	22
82	The Role of the MAGUK Protein CASK in Neural Development and Synaptic Function. Current Medicinal Chemistry, 2006, 13, 1915-1927.	1.2	173
83	Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10572-10577.	3.3	110
84	Identification of Tbr-1/CASK complex target genes in neurons. Journal of Neurochemistry, 2004, 91, 1483-1492.	2.1	80
85	Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein. Neuron, 2004, 43, 437.	3.8	1
86	Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein. Neuron, 2004, 42, 113-128.	3.8	142
87	Slit Promotes Branching and Elongation of Neurites of Interneurons But Not Projection Neurons from the Developing Telencephalon. Molecular and Cellular Neurosciences, 2002, 21, 250-265.	1.0	24
88	Tbr1 Regulates Differentiation of the Preplate and Layer 6. Neuron, 2001, 29, 353-366.	3.8	829
89	Bipartite Interaction between Neurofibromatosis Type I Protein (Neurofibromin) and Syndecan Transmembrane Heparan Sulfate Proteoglycans. Journal of Neuroscience, 2001, 21, 3764-3770.	1.7	76
90	Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature, 2000, 404, 298-302.	13.7	339

#	Article	IF	CITATIONS
91	An Intramolecular Interaction between Src Homology 3 Domain and Guanylate Kinase-Like Domain Required for Channel Clustering by Postsynaptic Density-95/SAP90. Journal of Neuroscience, 2000, 20, 3580-3587.	1.7	122
92	PSD-95 and SAP97 Exhibit Distinct Mechanisms for Regulating K+ Channel Surface Expression and Clustering. Journal of Cell Biology, 2000, 148, 147-157.	2.3	165
93	Regulated Expression and Subcellular Localization of Syndecan Heparan Sulfate Proteoglycans and the Syndecan-Binding Protein CASK/LIN-2 during Rat Brain Development. Journal of Neuroscience, 1999, 19, 7415-7425.	1.7	196
94	Requirement of N-terminal Cysteines of PSD-95 for PSD-95 Multimerization and Ternary Complex Formation, but Not for Binding to Potassium Channel Kv1.4. Journal of Biological Chemistry, 1999, 274, 532-536.	1.6	79
95	Direct Interaction of CASK/LIN-2 and Syndecan Heparan Sulfate Proteoglycan and Their Overlapping Distribution in Neuronal Synapses. Journal of Cell Biology, 1998, 142, 139-151.	2.3	325
96	Atypical signaling defects prevent IL-2 gene expression inIpr/Ipr CD4-CD8-cells. Journal of Biomedical Science, 1998, 5, 297-304.	2.6	5
97	Eph Receptors, Ephrins, and PDZs Gather in Neuronal Synapses. Neuron, 1998, 21, 1227-1229.	3.8	22
98	Atypical Signaling Defects Prevent IL-2 Gene Expression in <i>lpr/lpr</i> CD4–CD8– Cells. Journal of Biomedical Science, 1998, 5, 297-304.	2.6	7
99	Chapter 9 Anchoring of glutamate receptors at the synapse. Progress in Brain Research, 1998, 116, 123-131.	0.9	24
100	GKAP, a Novel Synaptic Protein That Interacts with the Guanylate Kinase-like Domain of the PSD-95/SAP90 Family of Channel Clustering Molecules. Journal of Cell Biology, 1997, 136, 669-678.	2.3	488
101	Disulfide-Linked Head-to-Head Multimerization in the Mechanism of Ion Channel Clustering by PSD-95. Neuron, 1997, 18, 803-814.	3.8	199
102	Limited Regulatory Effect of T Cell Receptor-Derived Peptides. Cellular Immunology, 1995, 161, 218-225.	1.4	0
103	c-Jun N-terminal Kinase but Not Mitogen-activated Protein Kinase Is Sensitive to cAMP Inhibition in T Lymphocytes. Journal of Biological Chemistry, 1995, 270, 18094-18098.	1.6	97