List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2809724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar steam generation by heat localization. Nature Communications, 2014, 5, 4449.	5.8	1,623
2	Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces. Nano Letters, 2013, 13, 179-187.	4.5	950
3	Effect of Droplet Morphology on Growth Dynamics and Heat Transfer during Condensation on Superhydrophobic Nanostructured Surfaces. ACS Nano, 2012, 6, 1776-1785.	7.3	514
4	Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale. Langmuir, 2012, 28, 14424-14432.	1.6	347
5	Condensation heat transfer on superhydrophobic surfaces. MRS Bulletin, 2013, 38, 397-406.	1.7	329
6	How Coalescing Droplets Jump. ACS Nano, 2014, 8, 10352-10362.	7.3	304
7	Scalable Graphene Coatings for Enhanced Condensation Heat Transfer. Nano Letters, 2015, 15, 2902-2909.	4.5	236
8	Dropwise Condensation on Micro- and Nanostructured Surfaces. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 223-250.	1.4	235
9	Modeling and Optimization of Superhydrophobic Condensation. Journal of Heat Transfer, 2013, 135, .	1.2	224
10	Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer. Scientific Reports, 2013, 3, 1988.	1.6	222
11	Electrostatic charging of jumping droplets. Nature Communications, 2013, 4, 2517.	5.8	201
12	Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces. ACS Nano, 2019, 13, 4160-4173.	7.3	190
13	Condensation on Superhydrophobic Copper Oxide Nanostructures. Journal of Heat Transfer, 2013, 135,	1.2	187
14	Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces. ACS Nano, 2013, 7, 11043-11054.	7.3	180
15	Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality. ACS Applied Materials & Interfaces, 2017, 9, 36400-36408.	4.0	171
16	Jumping-droplet electrostatic energy harvesting. Applied Physics Letters, 2014, 105, .	1.5	163
17	Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics. Applied Physics Letters, 2014, 105, .	1.5	154
18	Review of heat transfer enhancement techniques for single phase flows. Renewable and Sustainable Energy Reviews, 2021, 137, 110566.	8.2	148

#	Article	IF	CITATIONS
19	Dropwise condensation on solid hydrophilic surfaces. Science Advances, 2020, 6, eaax0746.	4.7	143
20	Water droplet impact on elastic superhydrophobic surfaces. Scientific Reports, 2016, 6, 30328.	1.6	128
21	Coalescence-induced nanodroplet jumping. Physical Review Fluids, 2016, 1, .	1.0	128
22	Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces. Langmuir, 2016, 32, 7774-7787.	1.6	127
23	Enhanced Jumping-Droplet Departure. Langmuir, 2015, 31, 13452-13466.	1.6	126
24	Condensate droplet size distribution on lubricant-infused surfaces. International Journal of Heat and Mass Transfer, 2017, 109, 187-199.	2.5	123
25	Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons. Solar Energy, 2011, 85, 2843-2855.	2.9	100
26	Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties. ACS Nano, 2019, 13, 1309-1323.	7.3	97
27	Stable Dropwise Condensation of Ethanol and Hexane on Rationally Designed Ultrascalable Nanostructured Lubricant-Infused Surfaces. Nano Letters, 2019, 19, 5287-5296.	4.5	93
28	Jumping-droplet electronics hot-spot cooling. Applied Physics Letters, 2017, 110, .	1.5	91
29	Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nature Communications, 2021, 12, 5210.	5.8	89
30	Water immersion cooling of high power density electronics. International Journal of Heat and Mass Transfer, 2020, 147, 118918.	2.5	87
31	Hierarchical Condensation. ACS Nano, 2019, 13, 8169-8184.	7.3	83
32	Ultrascalable Three-Tier Hierarchical Nanoengineered Surfaces for Optimized Boiling. ACS Nano, 2019, 13, 14080-14093.	7.3	83
33	Recent developments, challenges, and pathways to stable dropwise condensation: A perspective. Applied Physics Letters, 2020, 116, .	1.5	83
34	Superhydrophobic Surfaces Made from Naturally Derived Hydrophobic Materials. ACS Sustainable Chemistry and Engineering, 2017, 5, 11362-11370.	3.2	81
35	Environment-Friendly Antibiofouling Superhydrophobic Coatings. ACS Sustainable Chemistry and Engineering, 2019, 7, 14509-14520.	3.2	75
36	Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. ACS Nano, 2020, 14, 12796-12809.	7.3	73

#	Article	IF	CITATIONS
37	Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation. ACS Applied Materials & Interfaces, 2018, 10, 12603-12611.	4.0	69
38	Exploring the Role of Habitat on the Wettability of Cicada Wings. ACS Applied Materials & Interfaces, 2017, 9, 27173-27184.	4.0	62
39	Condensation Induced Delamination of Nanoscale Hydrophobic Films. Advanced Functional Materials, 2019, 29, 1905222.	7.8	61
40	Thin Film Condensation on Nanostructured Surfaces. Advanced Functional Materials, 2018, 28, 1707000.	7.8	60
41	High power density thermal energy storage using additively manufactured heat exchangers and phase change material. International Journal of Heat and Mass Transfer, 2020, 153, 119591.	2.5	60
42	High power and energy density dynamic phase change materials using pressure-enhanced close contact melting. Nature Energy, 2022, 7, 270-280.	19.8	58
43	Condensation frosting on meter-scale superhydrophobic and superhydrophilic heat exchangers. International Journal of Heat and Mass Transfer, 2019, 145, 118694.	2.5	57
44	A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Langmuir, 2015, 31, 7885-7896.	1.6	56
45	Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes. ACS Nano, 2016, 10, 8223-8232.	7.3	53
46	Electric Field–Based Control and Enhancement of Boiling and Condensation. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 102-121.	1.4	52
47	Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 220-229.	1.4	52
48	Extreme Antiscaling Performance of Slippery Omniphobic Covalently Attached Liquids. ACS Applied Materials & Interfaces, 2020, 12, 12054-12067.	4.0	52
49	Scalable Corrosion-Resistant Coatings for Thermal Applications. ACS Applied Materials & Interfaces, 2021, 13, 4519-4534.	4.0	52
50	Phase change material-based thermal energy storage. Cell Reports Physical Science, 2021, 2, 100540.	2.8	51
51	Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation. Langmuir, 2018, 34, 6636-6644.	1.6	48
52	Fouling modeling and prediction approach for heat exchangers using deep learning. International Journal of Heat and Mass Transfer, 2020, 159, 120112.	2.5	47
53	Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves. Langmuir, 2020, 36, 9510-9522.	1.6	45
54	Superhydrophobic heat exchangers delay frost formation and enhance efficency of electric vehicle heat pumps. International Journal of Heat and Mass Transfer, 2021, 172, 121162.	2.5	45

#	Article	IF	CITATIONS
55	Electrically induced drop detachment and ejection. Physics of Fluids, 2016, 28, .	1.6	44
56	Millimeter-scale liquid metal droplet thermal switch. Applied Physics Letters, 2018, 112, .	1.5	44
57	Molecular and Topographical Organization: Influence on Cicada Wing Wettability and Bactericidal Properties. Advanced Materials Interfaces, 2020, 7, 2000112.	1.9	44
58	Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation. Nano Letters, 2017, 17, 7544-7551.	4.5	43
59	Design, Operation, and Loss Characterization of a 1-kW GaN-Based Three-Level Converter at Cryogenic Temperatures. IEEE Transactions on Power Electronics, 2020, 35, 12040-12052.	5.4	42
60	Enhanced Condensation on Liquid-Infused Nanoporous Surfaces by Vibration-Assisted Droplet Sweeping. ACS Nano, 2020, 14, 13367-13379.	7.3	41
61	Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces. Matter, 2020, 3, 1178-1195.	5.0	41
62	Droplet impact on vibrating superhydrophobic surfaces. Physical Review Fluids, 2017, 2, .	1.0	41
63	Liquid film–induced critical heat flux enhancement on structured surfaces. Science Advances, 2021, 7,	4.7	36
64	Fundamental limits of jumping droplet heat transfer. Applied Physics Letters, 2020, 116, .	1.5	35
65	Dropwise condensation of low surface tension fluids on lubricant-infused surfaces: Droplet size distribution and heat transfer. International Journal of Heat and Mass Transfer, 2021, 172, 121149.	2.5	34
66	External convective jumping-droplet condensation on a flat plate. International Journal of Heat and Mass Transfer, 2017, 107, 74-88.	2.5	33
67	Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling. Renewable and Sustainable Energy Reviews, 2022, 155, 111896.	8.2	33
68	Condensation Induced Blistering as a Measurement Technique for the Adhesion Energy of Nanoscale Polymer Films. Nano Letters, 2020, 20, 3918-3924.	4.5	32
69	Ultra-power-dense heat exchanger development through genetic algorithm design and additive manufacturing. Joule, 2021, 5, 3045-3056.	11.7	32
70	Life Span of Slippery Lubricant Infused Surfaces. ACS Applied Materials & Interfaces, 2022, 14, 4598-4611.	4.0	32
71	Steady Method for the Analysis of Evaporation Dynamics. Langmuir, 2017, 33, 12007-12015.	1.6	31
72	Numerical Simulation of Jumping Droplet Condensation. Langmuir, 2019, 35, 10309-10321.	1.6	31

#	Article	IF	CITATIONS
73	A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy. Applied Physics Letters, 2020, 116, .	1.5	31
74	Endoscopic Visualization of Contact Line Dynamics during Pool Boiling on Capillaryâ€Activated Copper Microchannels. Advanced Functional Materials, 2021, 31, 2006249.	7.8	31
75	Heat Transfer Enhancement of Single-Phase Internal Flows using Shape Optimization and Additively Manufactured Flow Structures. International Journal of Heat and Mass Transfer, 2021, 177, 121510.	2.5	31
76	Phase Change Material Heat Sink for Transient Cooling of High-Power Devices. International Journal of Heat and Mass Transfer, 2021, 170, 121033.	2.5	30
77	Superhydrophobic heat exchangers delay frost formation and reduce defrost energy input of aircraft environmental control systems. International Journal of Heat and Mass Transfer, 2022, 189, 122669.	2.5	30
78	Atmosphereâ€Mediated Scalable and Durable Biphilicity on Rationally Designed Structured Surfaces. Advanced Materials Interfaces, 2020, 7, 2000475.	1.9	29
79	An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 2341-2351.	1.4	28
80	Jumping droplets electronics cooling: Promise versus reality. Applied Physics Letters, 2020, 116, .	1.5	27
81	The apparent surface free energy of rare earth oxides is governed by hydrocarbon adsorption. IScience, 2022, 25, 103691.	1.9	27
82	Experimental evaluation of a 1 kW, single-phase, 3-level gallium nitride inverter in extreme cold environment. , 2017, , .		26
83	Ultrascalable Multifunctional Nanoengineered Copper and Aluminum for Antiadhesion and Bactericidal Applications. ACS Applied Bio Materials, 2019, 2, 2726-2737.	2.3	26
84	Composite Structured Surfaces for Durable Dropwise Condensation. International Journal of Heat and Mass Transfer, 2020, 156, 119890.	2.5	25
85	Bulk water freezing dynamics on superhydrophobic surfaces. Applied Physics Letters, 2017, 110, .	1.5	24
86	Internal convective jumping-droplet condensation in tubes. International Journal of Heat and Mass Transfer, 2017, 114, 1025-1036.	2.5	24
87	Cloaking Dynamics on Lubricantâ€Infused Surfaces. Advanced Materials Interfaces, 2020, 7, 2000983.	1.9	24
88	Condensation of Satellite Droplets on Lubricant-Cloaked Droplets. ACS Applied Materials & Interfaces, 2020, 12, 22246-22255.	4.0	24
89	Nanostructured jumping-droplet thermal rectifier. Physical Review E, 2021, 103, 023110.	0.8	24
90	High-Throughput Stamping of Hybrid Functional Surfaces. Langmuir, 2020, 36, 5730-5744.	1.6	23

#	Article	IF	CITATIONS
91	Scalable and Resilient Etched Metallic Micro- and Nanostructured Surfaces for Enhanced Flow Boiling. ACS Applied Nano Materials, 2021, 4, 6648-6658.	2.4	23
92	Superior Antidegeneration Hierarchical Nanoengineered Wicking Surfaces for Boiling Enhancement. Advanced Functional Materials, 2022, 32, 2108836.	7.8	23
93	Growth Dynamics During Dropwise Condensation on Nanostructured Superhydrophobic Surfaces. , 2012, , .		22
94	Wettability-defined frosting dynamics between plane fins in quiescent air. International Journal of Heat and Mass Transfer, 2021, 164, 120563.	2.5	22
95	Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: The Extent of Lubricant Miscibility. ACS Applied Materials & Interfaces, 2021, 13, 23121-23133.	4.0	22
96	Multi-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodology. Mathematical Biosciences and Engineering, 2020, 17, 7411-7427.	1.0	22
97	High-efficiency cooling via the monolithic integration of copper on electronic devices. Nature Electronics, 2022, 5, 394-402.	13.1	22
98	A Lipid-Inspired Highly Adhesive Interface for Durable Superhydrophobicity in Wet Environments and Stable Jumping Droplet Condensation. ACS Nano, 2022, 16, 4251-4262.	7.3	21
99	Enabling Renewable Energy Technologies in Harsh Climates with Ultraâ€Efficient Electroâ€Thermal Desnowing, Defrosting, and Deicing. Advanced Functional Materials, 2022, 32, .	7.8	21
100	Scalable Slippery Omniphobic Covalently Attached Liquid Coatings for Flow Fouling Reduction. ACS Applied Materials & Interfaces, 2021, 13, 38666-38679.	4.0	20
101	Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 43489-43504.	4.0	20
102	Performance analysis on system-level integration and operation of daytime radiative cooling technology for air-conditioning in buildings. Energy and Buildings, 2021, 235, 110749.	3.1	19
103	Polydimethylsiloxaneâ€5ilane Synergy enables Dropwise Condensation of Low Surface Tension Liquids. Advanced Functional Materials, 2022, 32, .	7.8	19
104	Dissolvable Template Nanoimprint Lithography: A Facile and Versatile Nanoscale Replication Technique. Nano Letters, 2020, 20, 6989-6997.	4.5	18
105	Opportunities in Nano-Engineered Surface Designs for Enhanced Condensation Heat and Mass Transfer. Journal of Heat Transfer, 2022, 144, .	1.2	18
106	How Superhydrophobic Grooves Drive Single-Droplet Jumping. Langmuir, 2022, 38, 4452-4460.	1.6	18
107	Pulse interfacial defrosting. Applied Physics Letters, 2019, 115, .	1.5	17
108	Self-assembled liquid bridge confined boiling on nanoengineered surfaces. International Journal of Heat and Mass Transfer, 2019, 133, 1154-1164.	2.5	17

#	Article	IF	CITATIONS
109	Active hot spot cooling of GaN transistors with electric field enhanced jumping droplet condensation. , 2017, , .		16
110	Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and bioelectronic devices. Science Advances, 2020, 6, .	4.7	16
111	Materials and Interface Challenges in High-Vapor-Quality Two-Phase Flow Boiling Research. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1583-1591.	1.4	16
112	A Deep Learning Perspective on Dropwise Condensation. Advanced Science, 2021, 8, e2101794.	5.6	16
113	Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS). Analytical and Bioanalytical Chemistry, 2018, 410, 1911-1921.	1.9	15
114	Machine learning enabled condensation heat transfer measurement. International Journal of Heat and Mass Transfer, 2022, 194, 123016.	2.5	15
115	Effects of environmental aging on physical properties of aromatic thermosetting copolyester matrix neat and nanocomposite foams. Polymer Degradation and Stability, 2018, 147, 49-56.	2.7	14
116	A versatile interferometric technique for probing the thermophysical properties of complex fluids. Light: Science and Applications, 2022, 11, 115.	7.7	14
117	Microscale Confinement and Wetting Contrast Enable Enhanced and Tunable Condensation. ACS Nano, 2022, 16, 9510-9522.	7.3	14
118	Liquid Evaporation on Superhydrophobic and Superhydrophilic Nanostructured Surfaces. Journal of Heat Transfer, 2011, 133, .	1.2	13
119	Development of automated angle-scanning, high-speed surface plasmon resonance imaging and SPRi visualization for the study of dropwise condensation. Experiments in Fluids, 2020, 61, 1.	1.1	13
120	Gas-Phase Temperature Mapping of Evaporating Microdroplets. ACS Applied Materials & Interfaces, 2021, 13, 15925-15938.	4.0	13
121	The Impact of Non-uniform Metal Scaffolds on the Performance of 3D Structured Silicon Anodes. Journal of Energy Storage, 2020, 30, 101502.	3.9	13
122	<i>In Situ</i> Droplet Microgoniometry Using Optical Microscopy. ACS Nano, 2019, 13, 13343-13353.	7.3	12
123	Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation. Microchemical Journal, 2020, 158, 105089.	2.3	12
124	Electrothermal-Control Co-Design of an All Silicon Carbide 2×250 kW Dual Inverter for Heavy-Duty Traction Applications. IEEE Transactions on Industry Applications, 2022, 58, 505-516.	3.3	12
125	Modular Heat Sinks for Enhanced Thermal Management of Electronics. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143,	1.2	11
126	Tunable and Robust Nanostructuring for Multifunctional Metal Additively Manufactured Interfaces. Nano Letters, 2022, 22, 2650-2659.	4.5	10

#	Article	IF	CITATIONS
127	Transient pulse condensation. Applied Physics Letters, 2020, 117, 091602.	1.5	9
128	Equivalent Thermal Conductivity Prediction of Form-Wound Windings With Litz Wire Including Transposition Effects. IEEE Transactions on Industry Applications, 2021, 57, 1440-1449.	3.3	9
129	Droplet evaporation dynamics on microstructured biphilic, hydrophobic, and smooth surfaces. Experiments in Fluids, 2021, 62, 1.	1.1	8
130	In situ jet electrolyte micromachining and additive manufacturing. Applied Physics Letters, 2021, 119, 171602.	1.5	8
131	Biphilic jumping-droplet condensation. Cell Reports Physical Science, 2022, 3, 100823.	2.8	8
132	Ultrascalable Surface Structuring Strategy of Metal Additively Manufactured Materials for Enhanced Condensation. Advanced Science, 2022, 9, .	5.6	8
133	Cicada-inspired self-cleaning superhydrophobic surfaces. Journal of Heat Transfer, 2019, 141, .	1.2	7
134	Role of Thin Film Adhesion on Capillary Peeling. Nano Letters, 2021, 21, 9983-9989.	4.5	7
135	Ultra-low ice-substrate adhesion and self-deicing during droplet impact freezing. Cell Reports Physical Science, 2022, 3, 100894.	2.8	7
136	Exploring the limits of condensation heat transfer: A numerical study of microscale-confined condensation between parallel surfaces having wetting contrast. International Journal of Heat and Mass Transfer, 2022, 193, 122758.	2.5	7
137	Recent Developments in Altered Wettability for Enhancing Condensation. , 2015, , 85-131.		6
138	Analysis of modular composite heat pipes. International Journal of Heat and Mass Transfer, 2018, 127, 1198-1207.	2.5	5
139	Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method. Langmuir, 2020, 36, 13860-13871.	1.6	5
140	Asymmetric Bubble Formation at Rectangular Orifices. Langmuir, 2021, 37, 4302-4307.	1.6	5
141	Springboard Droplet Bouncing on Flexible Superhydrophobic Substrates. Journal of Heat Transfer, 2017, 139, .	1.2	4
142	Reduced Order Design Optimization of Liquid Cooled Heat Sinks. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	4
143	Visualization of Droplet Nucleation on Patterned Hybrid Surfaces. Journal of Heat Transfer, 2019, 141, . 	1.2	4
144	Droplet Cloaking Imaging and Characterization. Journal of Heat Transfer, 2018, 140, .	1.2	3

#	Article	IF	CITATIONS
145	A numerical fitting routine for frequency-domain thermoreflectance measurements of nanoscale material systems having arbitrary geometries. Journal of Applied Physics, 2021, 129, .	1.1	3
146	"Swimming Jellyfish": Visualizing Jet-Like Internal Flow in Coalescing Droplets. Journal of Heat Transfer, 2019, 141, .	1.2	3
147	Slippery omniphobic covalently attached liquid coatings mitigate carbon deposition by autoxidation of jet fuel. Cell Reports Physical Science, 2022, 3, 100859.	2.8	3
148	Focal Plane Shift Imaging for the Analysis of Multi-Droplet Jumping. Journal of Heat Transfer, 2017, 139,	1.2	2
149	Controlling the Contact Times of Bouncing Droplets: Droplet Impact on Vibrating Surfaces. Journal of Heat Transfer, 2018, 140, .	1.2	2
150	Surrogate Model Assisted Design of Silicon Anode Considering Lithiation Induced Stresses. , 2019, , .		2
151	Direct cooling of a planar magnetic converter using dielectric liquid forced convection enabled by additive manufacturing. International Journal of Heat and Mass Transfer, 2022, 191, 122809.	2.5	2
152	Heat Spreader Thermal Switch for Power Converter Isothermalization. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 1063-1081.	1.4	2
153	Electrical and Thermal Active Co-Management for Lithium-ion Batteries. , 2022, , .		2
154	Additively Manufactured Impinging Air Jet Cooler for High-Power Electronic Devices. , 2019, , .		1
155	"Dancing Droplets― Partial Coalescence on Superhydrophobic Surfaces. Journal of Heat Transfer, 2020, 142, .	1.2	1
156	DROPLET EVAPORATION ON FUNCTIONAL SURFACES. , 2018, , .		1
157	Frost Halo Dynamics on Superhydrophobic Surfaces. Journal of Heat Transfer, 2020, 142, .	1.2	1
158	Nanostructuring of Metallic Additively Manufactured Surfaces for Enhanced Jumping Droplet Condensation. , 2021, , .		1
159	High Angle Environmental Scanning Electron Microscopy for the Study of Dropwise Condensation on Nanostructured Superhydrophobic Surfaces. Microscopy and Microanalysis, 2012, 18, 1164-1165.	0.2	0
160	Heat Transfer Photogallery. Journal of Heat Transfer, 2018, 140, .	1.2	0
161	Heat Transfer Photogallery. Journal of Heat Transfer, 2018, 140, .	1.2	0
162	Heat Transfer Photogallery. Journal of Heat Transfer, 2019, 141, .	1.2	0