List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature, 2004, 430, 88-93.	13.7	1,683
2	[34] GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology, 2000, 328, 575-IN7.	0.4	570
3	Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders. Cell, 2015, 161, 647-660.	13.5	482
4	Integrating â€~omic' information: a bridge between genomics and systems biology. Trends in Genetics, 2003, 19, 551-560.	2.9	407
5	Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Research, 2011, 21, 645-657.	2.4	277
6	Diet-Induced Developmental Acceleration Independent of TOR and Insulin in C.Âelegans. Cell, 2013, 153, 240-252.	13.5	260
7	High-Throughput Yeast Two-Hybrid Assays for Large-Scale Protein Interaction Mapping. Methods, 2001, 24, 297-306.	1.9	258
8	A Multiparameter Network Reveals Extensive Divergence between C. elegans bHLH Transcription Factors. Cell, 2009, 138, 314-327.	13.5	242
9	Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nature Protocols, 2008, 3, 698-709.	5.5	237
10	The interplay between transcription factors and microRNAs in genomeâ€scale regulatory networks. BioEssays, 2009, 31, 435-445.	1.2	226
11	A Gene-Centered C. elegans Protein-DNA Interaction Network. Cell, 2006, 125, 1193-1205.	13.5	224
12	Bacterial Metabolism Affects the C.Âelegans Response to Cancer Chemotherapeutics. Cell, 2017, 169, 431-441.e8.	13.5	215
13	Using networks to measure similarity between genes: association index selection. Nature Methods, 2013, 10, 1169-1176.	9.0	209
14	Interspecies Systems Biology Uncovers Metabolites Affecting C.Âelegans Gene Expression and Life History Traits. Cell, 2014, 156, 759-770.	13.5	209
15	A <i>C. elegans</i> genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes and Development, 2008, 22, 2535-2549.	2.7	207
16	Genome-scale spatiotemporal analysis of <i>Caenorhabditis elegans</i> microRNA promoter activity. Genome Research, 2008, 18, 2005-2015.	2.4	190
17	A Gateway-Compatible Yeast One-Hybrid System. Genome Research, 2004, 14, 2093-2101.	2.4	189
18	A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biology, 2005, 6, R110.	13.9	175

#	Article	IF	CITATIONS
19	A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Reports, 2001, 2, 821-828.	2.0	173
20	Integrating Interactome, Phenome, and Transcriptome Mapping Data for the C. elegans Germline. Current Biology, 2002, 12, 1952-1958.	1.8	170
21	A First Version of the Caenorhabditis elegans Promoterome. Genome Research, 2004, 14, 2169-2175.	2.4	155
22	A steleâ€enriched gene regulatory network in the Arabidopsis root. Molecular Systems Biology, 2011, 7, 459.	3.2	145
23	Protein interaction maps for model organisms. Nature Reviews Molecular Cell Biology, 2001, 2, 55-63.	16.1	139
24	Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping. Genome Research, 2006, 16, 1445-1454.	2.4	136
25	Integration of Metabolic and Gene Regulatory Networks Modulates the C.Âelegans Dietary Response. Cell, 2013, 153, 253-266.	13.5	136
26	WormCat: An Online Tool for Annotation and Visualization of <i>Caenorhabditis elegans</i> Genome-Scale Data. Genetics, 2020, 214, 279-294.	1.2	125
27	Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns. BMC Genomics, 2007, 8, 27.	1.2	120
28	C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mechanisms of Ageing and Development, 2006, 127, 741-747.	2.2	117
29	Enhanced yeast one-hybrid assays for high-throughput gene-centered regulatory network mapping. Nature Methods, 2011, 8, 1059-1064.	9.0	117
30	Enhanced Y1H assays for Arabidopsis. Nature Methods, 2011, 8, 1053-1055.	9.0	115
31	Human Gene-Centered Transcription Factor Networks for Enhancers and Disease Variants. Cell, 2015, 161, 661-673.	13.5	111
32	C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metabolism, 2005, 2, 35-42.	7.2	110
33	A Caenorhabditis elegans Genome-Scale Metabolic Network Model. Cell Systems, 2016, 2, 297-311.	2.9	96
34	Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans. ELife, 2016, 5, .	2.8	96
35	RNA Interference in <i>Caenorhabditis elegans</i> . Current Protocols in Molecular Biology, 2015, 109, 26.3.1-26.3.30.	2.9	94
36	Functional modularity of nuclear hormone receptors in a <i>Caenorhabditis elegans</i> metabolic gene regulatory network. Molecular Systems Biology, 2010, 6, 367.	3.2	93

#	Article	IF	CITATIONS
37	Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. Genome Research, 2007, 17, 1061-1071.	2.4	87
38	Complex expression dynamics and robustness in <i>C. elegans</i> insulin networks. Genome Research, 2013, 23, 954-965.	2.4	87
39	Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. ELife, 2015, 4, .	2.8	85
40	Extensive Rewiring and Complex Evolutionary Dynamics in a C.Âelegans Multiparameter Transcription Factor Network. Molecular Cell, 2013, 51, 116-127.	4.5	83
41	C. elegans and its bacterial diet as a model for systems-level understanding of host–microbiota interactions. Current Opinion in Biotechnology, 2017, 46, 74-80.	3.3	82
42	c-Myc/Max Heterodimers Bind Cooperatively to the E-Box Sequences Located in the First Intron of the Rat Ornithine Decarboxylase (ODC) Gene. Nucleic Acids Research, 1997, 25, 1493-1501.	6.5	77
43	Using a structural and logics systems approach to infer bHLH–DNA binding specificity determinants. Nucleic Acids Research, 2011, 39, 4553-4563.	6.5	73
44	Worms, bacteria, and micronutrients: an elegant model of our diet. Trends in Genetics, 2014, 30, 496-503.	2.9	72
45	A geneâ€centered <i>C.Âelegans</i> protein– <scp>DNA</scp> interaction network provides a framework for functional predictions. Molecular Systems Biology, 2016, 12, 884.	3.2	71
46	Gateway Recombinational Cloning. Cold Spring Harbor Protocols, 2018, 2018, pdb.top094912.	0.2	65
47	Transcription Factor Activity Mapping of a Tissue-Specific InÂVivo Gene Regulatory Network. Cell Systems, 2015, 1, 152-162.	2.9	64
48	Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping. Nature Methods, 2007, 4, 659-664.	9.0	62
49	Metabolic network modeling with model organisms. Current Opinion in Chemical Biology, 2017, 36, 32-39.	2.8	55
50	What does biologically meaningful mean? A perspective on gene regulatory network validation. Genome Biology, 2011, 12, 109.	13.9	54
51	Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms. Annual Review of Genetics, 2015, 49, 553-575.	3.2	52
52	A Genetic Strategy to Eliminate Self-Activator Baits Prior to High-Throughput Yeast Two-Hybrid Screens. Genome Research, 1999, 9, 1128-1134.	2.4	51
53	The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in <i>C. elegans</i> . Genes and Development, 2008, 22, 2520-2534.	2.7	50
54	Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans DRM Complex. PLoS Genetics, 2011, 7, e1002074.	1.5	50

#	Article	IF	CITATIONS
55	A Persistence Detector for Metabolic Network Rewiring in an Animal. Cell Reports, 2019, 26, 460-468.e4.	2.9	50
56	Yeast one-hybrid assays for gene-centered human gene regulatory network mapping. Nature Methods, 2011, 8, 1050-1052.	9.0	48
57	Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. ELife, 2020, 9, .	2.8	44
58	A Delicate Balance between Bacterial Iron and Reactive Oxygen Species Supports Optimal C.Âelegans Development. Cell Host and Microbe, 2019, 26, 400-411.e3.	5.1	43
59	Gene-centered regulatory networks. Briefings in Functional Genomics, 2010, 9, 4-12.	1.3	40
60	Caenorhabditis elegans metabolic gene regulatory networks govern the cellular economy. Trends in Endocrinology and Metabolism, 2014, 25, 502-508.	3.1	39
61	The Oxidative Stress Response in <i>Caenorhabditis elegans</i> Requires the GATA Transcription Factor ELT-3 and SKN-1/Nrf2. Genetics, 2017, 206, 1909-1922.	1.2	37
62	The C. elegans Snail homolog CES-1 can activate gene expression in vivo and share targets with bHLH transcription factors. Nucleic Acids Research, 2009, 37, 3689-3698.	6.5	36
63	Modeling tissueâ€relevant <i>Caenorhabditis elegans</i> metabolism at network, pathway, reaction, and metabolite levels. Molecular Systems Biology, 2020, 16, e9649.	3.2	32
64	A Compendium of <i>Caenorhabditis elegans</i> RNA Binding Proteins Predicts Extensive Regulation at Multiple Levels. G3: Genes, Genomes, Genetics, 2013, 3, 297-304.	0.8	31
65	EDGEdb: a transcription factor-DNA Interaction database for the analysis of C. elegans differential gene expression. BMC Genomics, 2007, 8, 21.	1.2	30
66	Food, pathogen, signal. Worm, 2013, 2, e26454.	1.0	28
67	Transcription factor binding to Caenorhabditis elegans first introns reveals lack of redundancy with gene promoters. Nucleic Acids Research, 2014, 42, 153-162.	6.5	27
68	A Model of Elegance. American Journal of Human Genetics, 1998, 63, 955-961.	2.6	22
69	C.Âelegans MRP-5 Exports Vitamin B12 from Mother to Offspring to Support Embryonic Development. Cell Reports, 2018, 22, 3126-3133.	2.9	21
70	Transcription factor functionality and transcription regulatory networks. Molecular BioSystems, 2008, 4, 309.	2.9	20
71	[6] A green fluorescent protein-based reverse two-hybrid system: Application to the characterization of large numbers of potential protein-protein interactions. Methods in Enzymology, 2000, 328, 74-IN1.	0.4	19
72	Gene-Centered Regulatory Network Mapping. Methods in Cell Biology, 2011, 106, 271-288.	0.5	19

#	Article	IF	CITATIONS
73	Evolved bacterial resistance against fluoropyrimidines can lower chemotherapy impact in the Caenorhabditis elegans host. ELife, 2020, 9, .	2.8	19
74	lin-8, Which Antagonizes Caenorhabditis elegans Ras-Mediated Vulval Induction, Encodes a Novel Nuclear Protein That Interacts With the LIN-35 Rb Protein. Genetics, 2005, 171, 1017-1031.	1.2	18
75	E1A functions as a coactivator of retinoic acid-dependent retinoic acid receptor-beta 2 promoter activation. Molecular Endocrinology, 1993, 7, 604-615.	3.7	13
76	A regulatory cascade of three transcription factors in a single specific neuron, DVC, in Caenorhabditis elegans. Gene, 2012, 494, 73-84.	1.0	12
77	Gene-Centered Yeast One-Hybrid Assays. Cold Spring Harbor Protocols, 2016, 2016, pdb.top077669.	0.2	12
78	Generating Bait Strains for Yeast One-Hybrid Assays. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot088948.	0.2	11
79	Integrated version of reverse two-hybrid system for the postproteomic era. Methods in Enzymology, 2002, 350, 525-545.	0.4	10
80	Many transcription factors contribute to <i>C.Âelegans</i> growth and fat storage. Genes To Cells, 2017, 22, 770-784.	0.5	9
81	Transcriptional regulation of metabolic flux: A Caenorhabditis elegans perspective. Current Opinion in Systems Biology, 2019, 15, 12-18.	1.3	9
82	A metabolic regulatory network for the Caenorhabditis elegans intestine. IScience, 2022, 25, 104688.	1.9	8
83	Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6. BMC Developmental Biology, 2014, 14, 17.	2.1	5
84	C. elegans and its bacterial diet: An interspecies model to explore the effects of microbiota on drug response. Drug Discovery Today: Disease Models, 2018, 28, 21-26.	1.2	5
85	Generating Yeast One-Hybrid DNA-Bait Strains. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot094961.	0.2	5
86	Gateway-Compatible Yeast One-Hybrid and Two-Hybrid Assays. Cold Spring Harbor Protocols, 2018, 2018, pdb.top094953.	0.2	4
87	Genetic Adaptation to Diet Preserves Longevity. Cell Metabolism, 2014, 19, 177-178.	7.2	3
88	PRIMA: a gene-centered, RNA-to-protein method for mapping RNA-protein interactions. Translation, 2017, 5, e1295130.	2.9	2
89	If two deletions don't stop growth, try three. Science, 2018, 360, 269-270.	6.0	2
90	Compartmentalization of metabolism between cell types in multicellular organisms: A computational perspective. Current Opinion in Systems Biology, 2021, 29, 100407.	1.3	2

#	Article	IF	CITATIONS
91	Getting an edge on human disease. Molecular Systems Biology, 2009, 5, 322.	3.2	1
92	Worms, bugs and drugs: Caenorhabditis elegans as a model for host-microbe-drug interactions. Current Opinion in Systems Biology, 2017, 6, 46-50.	1.3	1
93	Marian Walhout: Transcriptional mapmaker. Journal of Cell Biology, 2009, 186, 4-5.	2.3	0
94	As we come to the end of 2011, several members of the Genome Biology Editorial Board give their views on the state of play in genomics. Genome Biology, 2011, 12, 137.	13.9	0
95	Identifying Interactors from an Activation Domain Prey Library. Cold Spring Harbor Protocols, 2018, 2018, 2018, pdb.prot094987.	0.2	0
96	geneâ€centered regulatory networks. FASEB Journal, 2010, 24, 314.1.	0.2	0