
Simon Joly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2809449/publications.pdf

Version: 2024-02-01

SIMONIOLY

#	Article	IF	CITATIONS
1	The Level of Pollination Specialization Affects the Relationship between the Shape of Flowers and the Bills of Their Hummingbird Pollinators in Antillean Gesneriaceae. International Journal of Plant Sciences, 2022, 183, 193-204.	1.3	3
2	Red and yellow pigments in autumn leaves are associated with higher nitrogen resorption. Journal of Evolutionary Biology, 2022, 35, 180-182.	1.7	2
3	Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong Shifts from Saprotrophic to Mycorrhizal Fungi with Increasing Soil Depth. Microbial Ecology, 2021, 82, 377-390.	2.8	28
4	Reversing extinction trends: new uses of (old) herbarium specimens to accelerate conservation action on threatened species. New Phytologist, 2021, 230, 433-450.	7.3	33
5	Repeated evolution of a reproductive polyphenism in plants is strongly associated with bilateral flower symmetry. Current Biology, 2021, 31, 1515-1520.e3.	3.9	13
6	Global dispersal and diversification of the genus <i>Schoenus</i> (Cyperaceae) from the Western Australian biodiversity hotspot. Journal of Systematics and Evolution, 2021, 59, 791-808.	3.1	5
7	Judge it by its shape: a pollinatorâ€blind approach reveals convergence in petal shape and infers pollination modes in the genus <i>Erythrina</i> . American Journal of Botany, 2021, 108, 1716-1730.	1.7	8
8	A multiâ€platform package for the analysis of intra―and interspecific trait evolution. Methods in Ecology and Evolution, 2020, 11, 1439-1447.	5.2	11
9	An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (<i>Helianthus</i>). New Phytologist, 2019, 221, 515-526.	7.3	118
10	On the importance of accounting for intraspecific genomic relatedness in multiâ€ s pecies studies. Methods in Ecology and Evolution, 2019, 10, 994-1001.	5.2	4
11	Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. ISME Journal, 2018, 12, 869-884.	9.8	91
12	Greater pollination generalization is not associated with reduced constraints on corolla shape in Antillean plants. Evolution; International Journal of Organic Evolution, 2018, 72, 244-260.	2.3	28
13	Bioclimatic niches are conserved and unrelated to pollination syndromes in Antillean Gesneriaceae. Royal Society Open Science, 2017, 4, 170293.	2.4	5
14	Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress. Frontiers in Plant Science, 2017, 8, 1115.	3.6	32
15	Species delimitation in the Caribbean <i>Gesneria viridiflora</i> complex (Gesneriaceae) reveals unsuspected endemism. Taxon, 2017, 66, 1171-1183.	0.7	7
16	Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in <i>Salix</i> sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants. Plant Physiology, 2016, 171, 3-24.	4.8	20
17	Explaining naturalization and invasiveness: new insights from historical ornamental plant catalogs. Ecology and Evolution, 2016, 6, 7188-7198.	1.9	10
18	Symbiotic association between <i>Salix purpurea</i> L. and <i>Rhizophagus irregularis</i> : modulation of plant responses under copper stress. Tree Physiology, 2016, 36, 407-420.	3.1	17

SIMON JOLY

#	Article	IF	CITATIONS
19	Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale?. Ecology and Evolution, 2015, 5, 1774-1783.	1.9	35
20	Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC Plant Biology, 2015, 15, 246.	3.6	21
21	Evolution and Phylogenetic Diversity of Yam Species (Dioscorea spp.): Implication for Conservation and Agricultural Practices. PLoS ONE, 2015, 10, e0145364.	2.5	28
22	Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals of Botany, 2015, 115, 275-291.	2.9	110
23	Flexible methods for estimating genetic distances from single nucleotide polymorphisms. Methods in Ecology and Evolution, 2015, 6, 938-948.	5.2	38
24	Genetic architecture of pollination syndrome transition between hummingbird-specialist and generalist species in the genus <i>Rhytidophyllum</i> (Gesneriaceae). PeerJ, 2015, 3, e1028.	2.0	19
25	Ecology in the age of <scp>DNA</scp> barcoding: the resource, the promise and the challenges ahead. Molecular Ecology Resources, 2014, 14, 221-232.	4.8	99
26	Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends in Biotechnology, 2014, 32, 271-280.	9.3	148
27	Species Radiation by Niche Shifts in New Zealand's Rockcresses (Pachycladon, Brassicaceae). Systematic Biology, 2014, 63, 192-202.	5.6	33
28	Testing Hybridization Hypotheses with Morphometry: the Case of Eastern American Arctic Species of <i>Potentilla</i> sect. <i>Niveae</i> (Rosaceae). Systematic Botany, 2014, 39, 193-204.	0.5	3
29	Impact of RNA-seq attributes on false positive rates in differential expression analysis of de novo assembled transcriptomes. BMC Research Notes, 2013, 6, 503.	1.4	20
30	Structuration of the genetic and metabolite diversity among Prince Edward Island cultivated wild rose ecotypes. Scientia Horticulturae, 2013, 160, 251-263.	3.6	11
31	JML: testing hybridization from species trees. Molecular Ecology Resources, 2012, 12, 179-184.	4.8	111
32	MIGRATION RATES, FREQUENCY-DEPENDENT SELECTION AND THE SELF-INCOMPATIBILITY LOCUS IN LEAVENWORTHIA (BRASSICACEAE). Evolution; International Journal of Organic Evolution, 2011, 65, 2357-2369.	2.3	21
33	Demographic Signatures Accompanying the Evolution of Selfing in Leavenworthia alabamica. Molecular Biology and Evolution, 2011, 28, 1717-1729.	8.9	96
34	Pachycladon. , 2011, , 227-249.		5
35	DOES MATE LIMITATION IN SELF-INCOMPATIBLE SPECIES PROMOTE THE EVOLUTION OF SELFING? THE CASE OF LEAVENWORTHIA ALABAMICA. Evolution; International Journal of Organic Evolution, 2010, 64, 1657-1670.	2.3	27
36	Fast Diploidization in Close Mesopolyploid Relatives of <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 2277-2290.	6.6	168

SIMON JOLY

#	Article	IF	CITATIONS
37	Measuring Branch Support in Species Trees Obtained by Gene Tree Parsimony. Systematic Biology, 2009, 58, 100-113.	5.6	8
38	A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. Molecular Phylogenetics and Evolution, 2009, 51, 365-372.	2.7	60
39	A Statistical Approach for Distinguishing Hybridization and Incomplete Lineage Sorting. American Naturalist, 2009, 174, E54-E70.	2.1	384
40	Phylogeny of Dinoflagellate Plastid Genes Recently Transferred to the Nucleus Supports a Common Ancestry with Red Algal Plastid Genes. Journal of Molecular Evolution, 2008, 66, 175-184.	1.8	12
41	AN APPROACH TO TRANSCRIPTOME ANALYSIS OF NON-MODEL ORGANISMS USING SHORT-READ SEQUENCES. , 2008, , .		68
42	Delimiting Species Boundaries in <i>Rosa</i> Sect. <i>Cinnamomeae</i> (Rosaceae) in Eastern North America. Systematic Botany, 2007, 32, 819-836.	0.5	25
43	Phylogenetic Relationships in the Genus <l>Rosa</l> : New Evidence from Chloroplast DNA Sequences and an Appraisal of Current Knowledge. Systematic Botany, 2007, 32, 366-378.	0.5	81
44	Haplotype Networks Can Be Misleading in the Presence of Missing Data. Systematic Biology, 2007, 56, 857-862.	5.6	75
45	Incorporating Allelic Variation for Reconstructing the Evolutionary History of Organisms from Multiple Genes: An Example from Rosa in North America. Systematic Biology, 2006, 55, 623-636.	5.6	148
46	Polyploid and hybrid evolution in roses east of the Rocky Mountains. American Journal of Botany, 2006, 93, 412-425.	1.7	101
47	Molecular markers indicate that the narrow Québec endemics Rosa rousseauiorum and Rosa williamsii are synonymous with the widespread Rosa blanda. Canadian Journal of Botany, 2005, 83, 386-398.	1.1	11
48	EVOLUTION OF TRIPLOIDY IN APIOS AMERICANA (LEGUMINOSAE) REVEALED BY GENEALOGICAL ANALYSIS OF THE HISTONE H3-D GENE. Evolution; International Journal of Organic Evolution, 2004, 58, 284.	2.3	6
49	Evolutionary Dynamics and Preferential Expression of Homeologous 18S-5.8S-26S Nuclear Ribosomal Genes in Natural and Artificial Glycine Allopolyploids. Molecular Biology and Evolution, 2004, 21, 1409-1421.	8.9	63
50	EVOLUTION OF TRIPLOIDY IN APIOS AMERICANA (LEGUMINOSAE) REVEALED BY GENEALOGICAL ANALYSIS OF THE HISTONE H3-D GENE. Evolution; International Journal of Organic Evolution, 2004, 58, 284-295.	2.3	21
51	Evolution of triploidy in Apios americana (Leguminosae) revealed by genealogical analysis of the histone H3-D gene. Evolution; International Journal of Organic Evolution, 2004, 58, 284-95.	2.3	5
52	Phylogenetic Implications of the Multiple Losses of the Mitochondrial coxII.i3 Intron in the Angiosperms. International Journal of Plant Sciences, 2001, 162, 359-373.	1.3	17