List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2809164/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Discrete field potentials produced by coherent activation of spinal dorsal horn neurons.<br>Experimental Brain Research, 2022, 240, 665-686.                                                                                                                                   | 1.5 | 2         |
| 2  | Nociception induces a differential presynaptic modulation of the synaptic efficacy of nociceptive and proprioceptive joint afferents. Experimental Brain Research, 2021, 239, 2375-2397.                                                                                       | 1.5 | 2         |
| 3  | Descending inhibition selectively counteracts the capsaicin-induced facilitation of dorsal horn neurons activated by joint nociceptive afferents. Experimental Brain Research, 2019, 237, 1629-1641.                                                                           | 1.5 | 2         |
| 4  | Supraspinal Shaping of Adaptive Transitions in the State of Functional Connectivity Between<br>Segmentally Distributed Dorsal Horn Neuronal Populations in Response to Nociception and<br>Antinociception. Frontiers in Systems Neuroscience, 2019, 13, 47.                    | 2.5 | 5         |
| 5  | Supraspinal modulation of neuronal synchronization by nociceptive stimulation induces an enduring reorganization of dorsal horn neuronal connectivity. Journal of Physiology, 2018, 596, 1747-1776.                                                                            | 2.9 | 11        |
| 6  | Markovian Analysis of the Sequential Behavior of the Spontaneous Spinal Cord Dorsum Potentials<br>Induced by Acute Nociceptive Stimulation in the Anesthetized Cat. Frontiers in Computational<br>Neuroscience, 2017, 11, 32.                                                  | 2.1 | 4         |
| 7  | A machine learning methodology for the selection and classification of spontaneous spinal cord dorsum potentials allows disclosure of structured (non-random) changes in neuronal connectivity induced by nociceptive stimulation. Frontiers in Neuroinformatics, 2015, 9, 21. | 2.5 | 7         |
| 8  | Dynamic synchronization of ongoing neuronal activity across spinal segments regulates sensory information flow. Journal of Physiology, 2015, 593, 2343-2363.                                                                                                                   | 2.9 | 15        |
| 9  | Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section. Journal of Physiology, 2013, 591, 2629-2645.                                                                                       | 2.9 | 3         |
| 10 | Modeling zero-lag synchronization of dorsal horn neurons during the traveling of electrical waves in the cat spinal cord. Physiological Reports, 2013, 1, e00021.                                                                                                              | 1.7 | 3         |
| 11 | Intersegmental Synchronization of Spontaneous Cord Dorsum Potentials as a Clinical Parameter to<br>Evaluate Changes in Neuronal Connectivity Produced by Peripheral Nerve and Spinal Cord Damage.<br>Biosystems and Biorobotics, 2013, , 563-567.                              | 0.3 | 1         |
| 12 | Changes in correlation between spontaneous activity of dorsal horn neurones lead to differential recruitment of inhibitory pathways in the cat spinal cord. Journal of Physiology, 2012, 590, 1563-1584.                                                                       | 2.9 | 24        |
| 13 | A new feature extraction method for signal classification applied to cord dorsum potential detection. Journal of Neural Engineering, 2012, 9, 056009.                                                                                                                          | 3.5 | 3         |
| 14 | Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal<br>Activity in Anesthetized Cats. PLoS ONE, 2011, 6, e26449.                                                                                                                   | 2.5 | 20        |
| 15 | In search of lost presynaptic inhibition. Experimental Brain Research, 2009, 196, 139-151.                                                                                                                                                                                     | 1.5 | 102       |
| 16 | Changes in synaptic effectiveness of myelinated joint afferents during capsaicin-induced inflammation of the footpad in the anesthetized cat. Experimental Brain Research, 2008, 187, 71-84.                                                                                   | 1.5 | 12        |
| 17 | Tonic and phasic differential GABAergic inhibition of synaptic actions of joint afferents in the cat.<br>Experimental Brain Research, 2006, 176, 98-118.                                                                                                                       | 1.5 | 11        |
| 18 | Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat. Experimental Brain Research, 2006, 176, 119-131.                                                                                          | 1.5 | 6         |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush. Brain Research, 2004, 1027, 179-187.                                                                                      | 2.2  | 9         |
| 20 | Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. Experimental Brain Research, 2004, 156, 377-391.                 | 1.5  | 18        |
| 21 | Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord. Experimental Brain Research, 2004, 159, 239-250.           | 1.5  | 15        |
| 22 | Effects of spinal and peripheral nerve lesions on the intersegmental synchronization of the spontaneous activity of dorsal horn neurons in the cat lumbosacral spinal cord. Neuroscience Letters, 2004, 361, 102-105.             | 2.1  | 13        |
| 23 | Intersegmental synchronization of spontaneous activity of dorsal horn neurons in the cat spinal cord. Experimental Brain Research, 2003, 148, 401-413.                                                                            | 1.5  | 28        |
| 24 | Chapter 31 Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after RamÃ <sup>3</sup> n y Cajal. Progress in Brain Research, 2002, 136, 409-421.              | 1.4  | 10        |
| 25 | Selectivity of the Central Control of Sensory Information in the Mammalian Spinal Cord. Advances in Experimental Medicine and Biology, 2002, 508, 157-170.                                                                        | 1.6  | 34        |
| 26 | Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat. Journal of Physiology, 2000, 529, 445-460.                                                        | 2.9  | 38        |
| 27 | Primary afferent depolarization produced in Aδ and C fibres by glutamate spillover? New ways to look<br>at old things. Journal of Physiology, 2000, 528, 1-1.                                                                     | 2.9  | 10        |
| 28 | Effects of pad on conduction of action potentials within segmental and ascending branches of single muscle afférents in the cat spinal cord. Experimental Brain Research, 2000, 135, 204-214.                                     | 1.5  | 7         |
| 29 | Presynaptic inhibition in the vertebrate spinal cord revisited. Experimental Brain Research, 1999, 129, 1-37.                                                                                                                     | 1.5  | 634       |
| 30 | Chapter 9 Selectivity of Presynaptic Inhibition: a Mechanism for Independent Control of Information<br>Flow through Individual Collaterals of Single Muscle Spindle Afferents. Progress in Brain Research,<br>1999, 123, 109-117. | 1.4  | 15        |
| 31 | Local control of information flow in segmental and ascending collaterals of single afferents.<br>Nature, 1998, 395, 600-604.                                                                                                      | 27.8 | 91        |
| 32 | Selective cortical and segmental control of primary afferent depolarization of single muscle afferents in the cat spinal cord. Experimental Brain Research, 1997, 113, 411-430.                                                   | 1.5  | 41        |
| 33 | Patterns of connectivity of spinal interneurons with single muscle afferents. Experimental Brain Research, 1997, 115, 387-402.                                                                                                    | 1.5  | 33        |
| 34 | Segmental and supraspinal control of synaptic effectiveness of functionally identified muscle afferents in the cat. Experimental Brain Research, 1996, 107, 391-404.                                                              | 1.5  | 33        |
| 35 | Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Experimental<br>Brain Research, 1996, 107, 405-20.                                                                                            | 1.5  | 18        |
| 36 | Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat Journal of Physiology, 1995, 482, 623-640.                                                                      | 2.9  | 29        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber. Brain Research, 1994, 643, 328-333.                                                          | 2.2  | 56        |
| 38 | Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats<br>with intact neuraxis and during reversible spinalization. Journal of Neurophysiology, 1993, 70,<br>1899-1910.  | 1.8  | 31        |
| 39 | Central Control of Sensory Information. Research Notes in Neural Computing, 1993, , 116-135.                                                                                                                             | 0.1  | 4         |
| 40 | Differential action of (?)-baclofen on the primary afferent depolarization produced by segmental and descending inputs. Experimental Brain Research, 1992, 91, 29-45.                                                    | 1.5  | 28        |
| 41 | Interaction of baseline synaptic noise and Ia EPSPs: evidence for appreciable negative correlation under physiological conditions. Journal of Neurophysiology, 1991, 65, 927-945.                                        | 1.8  | 24        |
| 42 | Pharmacologic analysis of inhibition produced by last-order intermediate nucleus interneurons<br>mediating nonreciprocal inhibition of motoneurons in cat spinal cord. Journal of Neurophysiology,<br>1990, 63, 147-160. | 1.8  | 39        |
| 43 | Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord.<br>Trends in Neurosciences, 1990, 13, 499-505.                                                                         | 8.6  | 218       |
| 44 | Supraspinal control of a short-latency cutaneous pathway to hindlimb motoneurons. Experimental<br>Brain Research, 1988, 69, 449-59.                                                                                      | 1.5  | 70        |
| 45 | PAD patterns of physiologically identified afferent fibres from the medial gastrocnemius muscle.<br>Experimental Brain Research, 1988, 71, 643-657.                                                                      | 1.5  | 48        |
| 46 | Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat.<br>Experimental Brain Research, 1988, 70, 15-25.                                                                     | 1.5  | 77        |
| 47 | Primary afferent depolarization and presynaptic inhibition in the mammalian spinal cord. Puerto Rico<br>Health Sciences Journal, 1988, 7, 155-66.                                                                        | 0.2  | 0         |
| 48 | Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord. Journal of Neurophysiology, 1987, 57, 1288-1313.                               | 1.8  | 101       |
| 49 | Mechanisms involved in the depolarization of cutaneous afferents produced by segmental and descending inputs in the cat spinal cord. Experimental Brain Research, 1987, 69, 195-207.                                     | 1.5  | 40        |
| 50 | PAD and PAH response patterns of group Ia- and Ib-fibers to cutaneous and descending inputs in the cat spinal cord. Journal of Neurophysiology, 1986, 56, 987-1006.                                                      | 1.8  | 85        |
| 51 | Specific and nonspecific mechanisms involved in generation of PAD of group Ia afferents in cat spinal cord. Journal of Neurophysiology, 1984, 52, 921-940.                                                               | 1.8  | 21        |
| 52 | Identification of common interneurons mediating pre- and postsynaptic inhibition in the cat spinal cord. Science, 1984, 224, 1453-1456.                                                                                  | 12.6 | 40        |
| 53 | Activation of brainstem serotoninergic pathways decreases homosynaptic depression of monosynaptic responses of frog spinal motoneurons. Brain Research, 1983, 280, 373-378.                                              | 2.2  | 44        |
| 54 | Specific and potassium components in the depolarization of the Ia afferents in the spinal cord of the cat. Brain Research, 1983, 272, 179-184.                                                                           | 2.2  | 17        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Sites of action of segmental and descending control of transmission on pathways mediating PAD of Ia-<br>and Ib-afferent fibers in cat spinal cord. Journal of Neurophysiology, 1983, 50, 743-769.                   | 1.8  | 126       |
| 56 | Presynaptic depolarization of unmyelinated primary afferent fibers in the spinal cord of the cat.<br>Neuroscience, 1982, 7, 1389-1400.                                                                              | 2.3  | 39        |
| 57 | Mechanisms involved in presynaptic depolarization of group I and rubrospinal fibers in cat spinal cord Journal of Neurophysiology, 1981, 46, 532-548.                                                               | 1.8  | 84        |
| 58 | Observations on neuronal pathways subserving primary afferent depolarization Journal of Neurophysiology, 1981, 46, 506-516.                                                                                         | 1.8  | 109       |
| 59 | Evidence of two different mechanisms involved in the generation of presynaptic depolarization of afferent and rubrospinal fibers in the cat spinal cord. Brain Research, 1980, 189, 256-261.                        | 2.2  | 20        |
| 60 | The influence of the gamma system on cross-correlated activity of Ia muscle spindles and its relation to information transmission. Neuroscience Letters, 1979, 13, 73-78.                                           | 2.1  | 60        |
| 61 | A method for the dynamic continuous estimation of excitability changes of single fiber terminals in the central nervous system. Neuroscience Letters, 1979, 11, 253-258.                                            | 2.1  | 28        |
| 62 | Control by Preynaptic Correlation: a mechanism affecting information transmission from la fibers to motoneurons. Journal of Neurophysiology, 1975, 38, 267-284.                                                     | 1.8  | 49        |
| 63 | Modulation of synaptic effectiveness of Ia and descending fibers in cat spinal cord. Journal of<br>Neurophysiology, 1975, 38, 1181-1195.                                                                            | 1.8  | 40        |
| 64 | Primary afferent hyperpolarization and presynaptic facilitation of Ia afferent terminals induced by large cutaneous fibers Journal of Neurophysiology, 1974, 37, 413-429.                                           | 1.8  | 49        |
| 65 | Changes in correlation between monosynaptic responses of single motoneurons and in information<br>transmission produced by conditioning volleys to cutaneous nerves Journal of Neurophysiology,<br>1972, 35, 44-64. | 1.8  | 25        |
| 66 | Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin.<br>Journal of Physiology, 1971, 213, 185-214.                                                                | 2.9  | 62        |
| 67 | Effects of conditioning afferent volleys on variability of monosynaptic responses of extensor motoneurons Journal of Neurophysiology, 1969, 32, 140-157.                                                            | 1.8  | 74        |
| 68 | Effect of muscle and cutaneous afferent nerve volleys on excitability fluctuations of Ia terminals<br>Journal of Neurophysiology, 1969, 32, 158-169.                                                                | 1.8  | 31        |
| 69 | Changes in correlation between monosynaptic reflexes produced by conditioning afferent volleys<br>Journal of Neurophysiology, 1969, 32, 759-772.                                                                    | 1.8  | 11        |
| 70 | Primary Afferent Depolarization Evoked by a Painful Stimulus. Science, 1969, 165, 184-186.                                                                                                                          | 12.6 | 31        |
| 71 | Presynaptic inhibition induced by vagal afferent volleys Journal of Neurophysiology, 1967, 30, 964-981.                                                                                                             | 1.8  | 54        |
| 72 | Effects of Presynaptic and Postsynaptic Inhibition on the Variability of the Monosynaptic Reflex.<br>Nature, 1967, 216, 292-293.                                                                                    | 27.8 | 22        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | CONTRIBUTION OF LOCAL ACTIVITY AND ELECTRIC SPREAD TO SOMATICALLY EVOKED POTENTIALS IN DIFFERENT AREAS OF THE HYPOTHALAMUS. Archives Italiennes De Biologie, 1965, 103, 119-35. | 0.4 | 11        |