Silvia Pajares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2809003/publications.pdf Version: 2024-02-01

SILVIA DAIADES

#	Article	IF	CITATIONS
1	Distribution of nitrogen-cycling genes in an oxygen-depleted cyclonic eddy in the Alfonso Basin, Gulf of California. Marine and Freshwater Research, 2021, 72, 1173-1184.	1.3	5
2	Associated Bacteria and Their Effects on Growth and Toxigenicity of the Dinoflagellate Prorocentrum lima Species Complex From Epibenthic Substrates Along Mexican Coasts. Frontiers in Marine Science, 2020, 7, .	2.5	13
3	Spatial Distribution Patterns of Bacterioplankton in the Oxygen Minimum Zone of the Tropical Mexican Pacific. Microbial Ecology, 2020, 80, 519-536.	2.8	30
4	Molecular and isotopic evidence of the distribution of nitrogen-cycling microbial communities in the oxygen minimum zone of the Tropical Mexican Pacific. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
5	Processes and Microorganisms Involved in the Marine Nitrogen Cycle: Knowledge and Gaps. Frontiers in Marine Science, 2019, 6, .	2.5	85
6	Environmental Controls on Soil Microbial Communities in a Seasonally Dry Tropical Forest. Applied and Environmental Microbiology, 2018, 84, .	3.1	31
7	Microbiome differences between river-dwelling and cave-adapted populations of the fish <i>Astyanax mexicanus</i> (De Filippi, 1853). PeerJ, 2018, 6, e5906.	2.0	25
8	Vertical and seasonal distribution of picoplankton and functional nitrogen genes in a highâ€altitude warmâ€monomictic tropical lake. Freshwater Biology, 2017, 62, 1180-1193.	2.4	31
9	Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Frontiers in Microbiology, 2016, 7, 1045.	3.5	218
10	Editorial: The Role of Microbial Communities in Tropical Ecosystems. Frontiers in Microbiology, 2016, 7, 1805.	3.5	24
11	Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico. PeerJ, 2016, 4, e2459.	2.0	35
12	Multivariate and Phylogenetic Analyses Assessing the Response of Bacterial Mat Communities from an Ancient Oligotrophic Aquatic Ecosystem to Different Scenarios of Long-Term Environmental Disturbance. PLoS ONE, 2015, 10, e0119741.	2.5	20
13	Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress. Antonie Van Leeuwenhoek, 2013, 104, 1159-1175.	1.7	16
14	Mesocosms of Aquatic Bacterial Communities from the Cuatro Cienegas Basin (Mexico): A Tool to Test Bacterial Community Response to Environmental Stress. Microbial Ecology, 2012, 64, 346-358.	2.8	23
15	Enzyme activity as an indicator of soil quality changes in degraded cultivated <i>Acrisols</i> in the Mexican Transâ€volcanic Belt. Land Degradation and Development, 2011, 22, 373-381.	3.9	42
16	Enzymatic Activity and Carbon Mineralization in Mexican Tepetates Cultivated Under Different Management Practices. Environmental Science and Engineering, 2011, , 51-62.	0.2	0
17	Biochemical indicators of carbon dynamic in an Acrisol cultivated under different management practices in the central Mexican highlands. Soil and Tillage Research, 2009, 105, 156-163.	5.6	20
18	Effect of different agricultural management systems on chemical fertility in cultivated tepetates of the Mexican transvolcanic belt. Agriculture, Ecosystems and Environment, 2009, 129, 422-427.	5.3	5

#	Article	IF	CITATIONS
19	Short-term changes in C and N distribution in soil particle size fractions induced by agricultural practices in a cultivated volcanic soil from Mexico. Organic Geochemistry, 2006, 37, 1943-1948.	1.8	22