Javier Montero-Pau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808980/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Haplotype analyses reveal novel insights into tomato history and domestication driven by long-distance migrations and latitudinal adaptations. Horticulture Research, 2022, 9, .	6.3	13
2	Genetic Variability of the Mating Recognition Gene in Populations of Brachionus plicatilis. Diversity, 2022, 14, 155.	1.7	4
3	European traditional tomatoes galore: a result of farmers' selection of a few diversity-rich loci. Journal of Experimental Botany, 2022, 73, 3431-3445.	4.8	11
4	Discovery of a Major QTL Controlling Trichome IV Density in Tomato Using K-Seq Genotyping. Genes, 2021, 12, 243.	2.4	12
5	A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics, 2021, 22, 341.	2.8	12
6	AtPGAP1 functions as a GPI inositol-deacylase required for efficient transport of GPI-anchored proteins. Plant Physiology, 2021, 187, 2156-2173.	4.8	16
7	RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. Frontiers in Plant Science, 2021, 12, 798858.	3.6	14
8	Loss of Arabidopsis β-COP Function Affects Golgi Structure, Plant Growth and Tolerance to Salt Stress. Frontiers in Plant Science, 2020, 11, 430.	3.6	20
9	Development of Environmental Health Competencies through Compulsory Education. A Polyhedral Approach Based on the SDGs. Sustainability, 2020, 12, 3215.	3.2	6
10	A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus. Frontiers in Plant Science, 2020, 11, 207.	3.6	30
11	Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research, 2020, 7, 66.	6.3	49
12	Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research, 2019, 6, 94.	6.3	34
13	<i>De novo</i> assembly of the zucchini genome reveals a wholeâ€genome duplication associated with the origin of the <i>Cucurbita</i> genus. Plant Biotechnology Journal, 2018, 16, 1161-1171.	8.3	160
14	Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ, 2018, 6, e6094.	2.0	15
15	Ecological differentiation in cryptic rotifer species: what we can learn from the Brachionus plicatilis complex. Hydrobiologia, 2017, 796, 7-18.	2.0	39
16	An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics, 2017, 18, 94.	2.8	93
17	Diapausing egg banks, lake size, and genetic diversity in the rotifer Brachionus plicatilis MÃ1⁄4ller (Rotifera, Monogononta). Hydrobiologia, 2017, 796, 77-91.	2.0	15
18	Genetics and Genomics of Cucurbita spp Plant Genetics and Genomics: Crops and Models, 2016, , 211-227.	0.3	4

JAVIER MONTERO-PAU

#	Article	IF	CITATIONS
19	Long-Term Competitive Dynamics of Two Cryptic Rotifer Species: Diapause and Fluctuating Conditions. PLoS ONE, 2015, 10, e0124406.	2.5	14
20	Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 2015, 16, 257.	2.8	190
21	Life-history traits, abiotic environment and coexistence: The case of two cryptic rotifer species. Journal of Experimental Marine Biology and Ecology, 2015, 465, 142-152.	1.5	29
22	Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. Journal of Plankton Research, 2015, 37, 953-965.	1.8	11
23	The effect of environmental uncertainty and diapause investment on the occurrence of specialist and generalist species. International Review of Hydrobiology, 2014, 99, 125-132.	0.9	6
24	Measuring the potential for growth in populations investing in diapause. Ecological Modelling, 2014, 272, 76-83.	2.5	12
25	Morphological Similarity and Ecological Overlap in Two Rotifer Species. PLoS ONE, 2013, 8, e57087.	2.5	32
26	Long-Term Coexistence of Rotifer Cryptic Species. PLoS ONE, 2011, 6, e21530.	2.5	59
27	Development of genomic resources for the phylogenetic analysis of the Brachionus plicatilis species complex (Rotifera: Monogononta). Hydrobiologia, 2011, 662, 43-50.	2.0	1
28	Effect of experimental methodology on estimation of density at sex initiation in cyclically parthenogenetic rotifers. Hydrobiologia, 2011, 662, 131-139.	2.0	10
29	Life-Cycle Switching and Coexistence of Species with No Niche Differentiation. PLoS ONE, 2011, 6, e20314.	2.5	37
30	Sex ratio, reproductive mode and genetic diversity in <i>Triops cancriformis</i> . Freshwater Biology, 2009, 54, 1392-1405.	2.4	17
31	Application of an inexpensive and highâ€ŧhroughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnology and Oceanography: Methods, 2008, 6, 218-222.	2.0	237
32	Persistent genetic signatures of colonization in <i>Brachionus manjavacas</i> rotifers in the Iberian Peninsula. Molecular Ecology, 2007, 16, 3228-3240.	3.9	70
33	Are pre-service Primary School teachers prepared to teach science by inquiry?. , 0, , .		2
34	Insight into incipient reproductive isolation in diverging populations of Brachionus plicatilis rotifer. Hydrobiologia, 0, , .	2.0	3