Anandwardhan A Hardikar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280888/publications.pdf

Version: 2024-02-01

101 papers 3,927 citations

172207 29 h-index 133063 59 g-index

106 all docs

106
docs citations

106 times ranked 5181 citing authors

#	Article	IF	CITATIONS
1	Shortened Leukocyte Telomere Length Is Associated With Glycemic Progression in Type 2 Diabetes: A Prospective and Mendelian Randomization Analysis. Diabetes Care, 2022, 45, 701-709.	4.3	37
2	A Pro-Endocrine Pancreatic Islet Transcriptional Program Established During Development Is Retained in Human Gallbladder Epithelial Cells. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1530-1553.e4.	2.3	1
3	Decrease in Plasma miR-27a and miR-221 After Concussion in Australian Football Players. Biomarker Insights, 2022, 17, 117727192210813.	1.0	9
4	Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells. Frontiers in Endocrinology, 2022, 13, 853863.	1.5	1
5	Relative leucocyte telomere length is associated with incident end-stage kidney disease and rapid decline of kidney function in type 2 diabetes: analysis from the Hong Kong Diabetes Register. Diabetologia, 2022, 65, 375-386.	2.9	11
6	Circulating microRNAs from early childhood and adolescence are associated with pre-diabetes at 18 years of age in women from the PMNS cohort. Journal of Developmental Origins of Health and Disease, 2022, 13, 806-811.	0.7	5
7	Vitamin D Levels During Pregnancy Are Associated With Offspring Telomere Length: A Longitudinal Mother-Child Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3901-e3909.	1.8	1
8	The microRNA-29 family: role in metabolism and metabolic disease. American Journal of Physiology - Cell Physiology, 2022, 323, C367-C377.	2.1	20
9	Diabetes, metabolic disease, and telomere length. Lancet Diabetes and Endocrinology,the, 2021, 9, 117-126.	5.5	98
10	Promoting Pro-Endocrine Differentiation and Graft Maturation Following Surgical Resection of the Mouse Pancreas. Methods in Molecular Biology, 2021, 2224, 87-98.	0.4	2
11	Postpartum circulating microRNA enhances prediction of future type 2 diabetes in women with previous gestational diabetes. Diabetologia, 2021, 64, 1516-1526.	2.9	19
12	Shortened relative leukocyte telomere length is associated with all-cause mortality in type 2 diabetes- analysis from the Hong Kong Diabetes Register. Diabetes Research and Clinical Practice, 2021, 173, 108649.	1.1	10
13	Machine learning workflows identify a microRNA signature of insulin transcription in human tissues. IScience, 2021, 24, 102379.	1.9	17
14	Urinary microRNAs as non-invasive biomarkers for toxic acute kidney injury in humans. Scientific Reports, 2021, 11, 9165.	1.6	11
15	A bird's eye view of the dynamics of pancreatic βâ€cell heterogeneity. Acta Physiologica, 2021, 233, e13664.	1.8	6
16	Insulin micro-secretion in Type 1 diabetes and related microRNA profiles. Scientific Reports, 2021, 11 , 11727 .	1.6	16
17	Continuous subcutaneous insulin infusion alters microRNA expression and glycaemic variability in children with type 1 diabetes. Scientific Reports, 2021, 11 , 16656 .	1.6	1
18	Manipulating cellular microRNAs and analyzing high-dimensional gene expression data using machine learning workflows. STAR Protocols, 2021, 2, 100910.	0.5	1

#	Article	IF	CITATIONS
19	Shortened Relative Leukocyte Telomere Length Is Associated With Prevalent and Incident Cardiovascular Complications in Type 2 Diabetes: Analysis From the Hong Kong Diabetes Register. Diabetes Care, 2020, 43, 2257-2265.	4.3	31
20	Urinary versus serum microRNAs in human oxalic acid poisoning: Contrasting signals and performance. Toxicology Letters, 2020, 334, 21-26.	0.4	O
21	A MicroRNA Signature in Acute Coronary Syndrome Patients and Modulation by Colchicine. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 444-455.	1.0	17
22	Circulating human microRNA biomarkers of oxalic acid-induced acute kidney injury. Archives of Toxicology, 2020, 94, 1725-1737.	1.9	15
23	An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length. Methods and Protocols, 2020, 3, 27.	0.9	40
24	Changes in dietary fiber intake in mice reveal associations between colonic mucin <i>O</i> -glycosylation and specific gut bacteria. Gut Microbes, 2020, 12, 1802209.	4.3	25
25	Directed differentiation into insulin-producing cells using microRNA manipulation. Open Medicine (Poland), 2020, 15, 567-570.	0.6	2
26	Postpartum Circulating Cell-Free Insulin DNA Levels Are Higher in Women with Previous Gestational Diabetes Mellitus Who Develop Type 2 Diabetes in Later Life. Journal of Diabetes Research, 2019, 2019, 1-5.	1.0	3
27	Placenta Stem/Stromal Cell–Derived Extracellular Vesicles for Potential Use in Lung Repair. Proteomics, 2019, 19, e1800166.	1.3	23
28	Droplet Digital PCR for Measuring Absolute Copies of Gene Transcripts in Human Islet-Derived Progenitor Cells. Methods in Molecular Biology, 2019, 2029, 37-48.	0.4	3
29	A Novel Gene Delivery Approach Using Metal Organic Frameworks in Human Islet-Derived Progenitor Cells. Methods in Molecular Biology, 2019, 2029, 81-91.	0.4	4
30	Phlda3 regulates beta cell survival during stress. Scientific Reports, 2019, 9, 12827.	1.6	16
31	Levels of circulating insulin cell-free DNA in women with polycystic ovary syndrome – a longitudinal cohort study. Reproductive Biology and Endocrinology, 2019, 17, 34.	1.4	8
32	Maternal stress during pregnancy and small for gestational age birthweight are not associated with telomere length at 11†years of age. Gene, 2019, 694, 97-101.	1.0	11
33	Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome. Frontiers in Medicine, 2019, 6, 242.	1.2	27
34	MicroRNAs as Prognostic Markers in Acute Coronary Syndrome Patientsâ€"A Systematic Review. Cells, 2019, 8, 1572.	1.8	25
35	Epigenetic and Transcriptome Profiling Identifies a Population of Visceral Adipose-Derived Progenitor Cells with the Potential to Differentiate into an Endocrine Pancreatic Lineage. Cell Transplantation, 2019, 28, 89-104.	1.2	5
36	The long noncoding RNA MALAT1 predicts human islet isolation quality. JCI Insight, 2019, 4, .	2.3	17

#	Article	IF	Citations
37	Comparative analysis of diagnostic platforms for measurement of differentially methylated insulin DNA. Journal of Biological Methods, 2019, 6, e113.	1.0	4
38	Expression of miR-206 in human islets and its role in glucokinase regulation. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E634-E637.	1.8	10
39	Connexins and microRNAs: Interlinked players in regulating islet function?. Islets, 2017, 9, 99-108.	0.9	5
40	Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells. Frontiers in Physiology, 2017, 8, 150.	1.3	24
41	Generation of Human Islet Progenitor Cells via Epithelial-to-Mesenchymal Transition. Pancreatic Islet Biology, 2016, , 217-240.	0.1	1
42	Human islet cells are killed by BID-independent mechanisms in response to FAS ligand. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 379-389.	2.2	10
43	Circulating microRNA Biomarkers of Diabetic Retinopathy. Diabetes, 2016, 65, 22-24.	0.3	52
44	Coxsackievirus B5 Infection Induces Dysregulation of microRNAs Predicted to Target Known Type 1 Diabetes Risk Genes in Human Pancreatic Islets. Diabetes, 2016, 65, 996-1003.	0.3	59
45	Biomarkers in Diabetic Retinopathy. Review of Diabetic Studies, 2015, 12, 159-195.	0.5	198
46	Hijacking of Endocrine and Metabolic Regulation in Cancer and Diabetes. BioMed Research International, 2015, 2015, 1-2.	0.9	2
47	A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy. Scientific Reports, 2015, 5, 10375.	1.6	64
48	Multigenerational Undernutrition Increases Susceptibility to Obesity and Diabetes that Is Not Reversed after Dietary Recuperation. Cell Metabolism, 2015, 22, 312-319.	7.2	83
49	Circulating microRNAs in Diabetes Progression: Discovery, Validation, and Research Translation. Exs, 2015, 106, 215-244.	1.4	11
50	Circulating microRNAs: Understanding the Limits for Quantitative Measurement by Realâ€√ime PCR. Journal of the American Heart Association, 2014, 3, e000792.	1.6	48
51	Integration-Free Human Induced Pluripotent Stem Cells from type 1 Diabetes Patient Skin Fibroblasts Show Increased Abundance of Pancreas-Specific microRNAs. Cell Medicine, 2014, 7, 15-24.	5.0	13
52	Lineage-Committed Pancreatic Progenitors and Stem Cells. Pancreatic Islet Biology, 2014, , 339-357.	0.1	2
53	Pdx1 (GFP/w) Mice for Isolation, Characterization, and Differentiation of Pancreatic Progenitor Cells. Methods in Molecular Biology, 2014, 1194, 271-288.	0.4	2
54	Manipulation and Assessment of Gut Microbiome for Metabolic Studies. Methods in Molecular Biology, 2014, 1194, 449-469.	0.4	2

#	Article	IF	Citations
55	Differential placental methylation and expression of VEGF, FLT- 1 and KDR genes in human term and preterm preeclampsia. Clinical Epigenetics, 2013, 5, 6.	1.8	87
56	Human Pancreatic Progenitors: Implications for Clinical Transplantation in Diabetes., 2013,, 237-249.		0
57	Circulating non-coding RNAs as biomarkers of beta cell death in diabetes. Pediatric Endocrinology Reviews, 2013, 11, 14-20.	1.2	22
58	<i>Oreocnide integrifolia</i> Flavonoids Augment Reprogramming for Islet Neogenesis and <i>\hat{l}^2</i> Cell Regeneration in Pancreatectomized BALB/c Mice. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-13.	0.5	7
59	Isolation, Expansion, and Characterization of Human Islet-Derived Progenitor Cells. Methods in Molecular Biology, 2012, 879, 351-366.	0.4	19
60	Green Approach Towards Size Controlled Synthesis of Biocompatible Antibacterial Metal Nanoparticles in Aqueous Phase Using Lysozyme. Current Nanoscience, 2012, 8, 130-140.	0.7	19
61	Simultaneous imaging of microRNA or mRNA territories with protein territory in mammalian cells at single cell resolution. RNA Biology, 2012, 9, 949-953.	1.5	11
62	Cellular detection of multiple antigens at single cell resolution using antibodies generated from the same species. Journal of Immunological Methods, 2012, 379, 42-47.	0.6	6
63	Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy, 2011, 13, 279-293.	0.3	90
64	Effect of alginate encapsulation on the cellular transcriptome of human islets. Biomaterials, 2011, 32, 8416-8425.	5.7	22
65	Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic \hat{I}^2 -cells from streptozotocin insult. BMC Complementary and Alternative Medicine, 2011, 11, 126.	3.7	18
66	A prevascularized tissue engineering chamber supports growth and function of islets and progenitor cells in diabetic mice. Islets, 2011, 3, 271-283.	0.9	22
67	Influence ofOreocnide integrifolia(Gaud.) Miq on IRS-1, Akt and Glut-4 in Fat-Fed C57BL/6J Type 2 Diabetes Mouse Model. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-9.	0.5	5
68	Location, location, location: Beneficial effects of autologous fat transplantation. Scientific Reports, 2011, 1, 81.	1.6	22
69	Reduced Expression of PDX-1 Is Associated With Decreased Beta Cell Function in Chronic Pancreatitis. Pancreas, 2010, 39, 856-862.	0.5	22
70	c-Kit and stem cell factor regulate PANC-1 cell differentiation into insulin- and glucagon-producing cells. Laboratory Investigation, 2010, 90, 1373-1384.	1.7	34
71	Epithelial-to-mesenchymal transition in pancreatic islet \hat{l}^2 cells. Cell Cycle, 2010, 9, 4077-4079.	1.3	31
72	Quantitative Estimation of Multiple miRNAs and mRNAs from a Single Cell. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5478.	0.2	11

#	Article	IF	Citations
73	Cdk4 Regulates Recruitment of Quiescent \hat{l}^2 -Cells and Ductal Epithelial Progenitors to Reconstitute \hat{l}^2 -Cell Mass. PLoS ONE, 2010, 5, e8653.	1.1	30
74	Human fetal pancreatic insulin-producing cells proliferate in vitro. Journal of Endocrinology, 2009, 201, 27-36.	1.2	46
75	New sources of \hat{I}^2 -cells for treating diabetes. Journal of Endocrinology, 2009, 202, 13-16.	1.2	30
76	Endothelial cells in pancreatic islet development and function. Islets, 2009, 1, 2-9.	0.9	22
77	The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets, 2009, 1, 137-147.	0.9	136
78	Mesenchymal Stem Cells Derived from Bone Marrow of Diabetic Patients Portrait Unique Markers Influenced by the Diabetic Microenvironment. Review of Diabetic Studies, 2009, 6, 260-270.	0.5	48
79	Isletâ€ike cell clusters occur naturally in human gall bladder and are retained in diabetic conditions ^{â€} . Journal of Cellular and Molecular Medicine, 2009, 13, 999-1000.	1.6	18
80	Expression of islet-specific microRNAs during human pancreatic development. Gene Expression Patterns, 2009, 9, 109-113.	0.3	244
81	Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro. Journal of Biosciences, 2009, 34, 523-528.	0.5	16
82	Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy, 2009, 11, 377-391.	0.3	330
83	Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage. Differentiation, 2009, 78, 232-240.	1.0	68
84	Human Blood Vessel–Derived Endothelial Progenitors for Endothelialization of Small Diameter Vascular Prosthesis. PLoS ONE, 2009, 4, e7718.	1.1	50
85	MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Developmental Biology, 2007, 311, 603-612.	0.9	150
86	New pancreas from old: microregulators of pancreas regeneration. Trends in Endocrinology and Metabolism, 2007, 18, 393-400.	3.1	84
87	HUMAN UMBILICAL CORD BLOOD SERUM PROMOTES GROWTH, PROLIFERATION, AS WELL AS DIFFERENTIATION OF HUMAN BONE MARROW–DERIVED PROGENITOR CELLS. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 283-6.	0.7	26
88	Stem-Cell Therapy for Diabetes Cure: How Close are We?. Current Stem Cell Research and Therapy, 2006, 1, 425-436.	0.6	9
89	Are Better Islet Cell Precursors Generated by Epithelial-to-Mesenchymal Transition?. Cell Cycle, 2005, 4, 380-382.	1.3	39
90	Epithelial-to-Mesenchymal Transition Generates Proliferative Human Islet Precursor Cells. Science, 2004, 306, 2261-2264.	6.0	424

#	Article	IF	CITATIONS
91	Generating new pancreas from old. Trends in Endocrinology and Metabolism, 2004, 15, 198-203.	3.1	27
92	Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7117-7122.	3.3	156
93	Functional Maturation of Fetal Porcine \hat{l}^2 -Cells by Glucagon-Like Peptide 1 and Cholecystokinin. Endocrinology, 2002, 143, 3505-3514.	1.4	77
94	Chromosomal polymorphism is associated with nematode parasitism in a natural population of a tropical midge. Chromosoma, 2001, 110, 58-64.	1.0	10
95	Intrauterine low protein diet increases fetal beta-cell sensitivity to NO and IL-1 beta: the protective role of taurine. Journal of Endocrinology, 2001, 171, 299-308.	1.2	81
96	Islet Cryopreservation: Improved Recovery following Taurine Pretreatment. Cell Transplantation, 2001, 10, 247-253.	1.2	15
97	Chitosan–Polyvinyl Pyrrolidone Hydrogels as Candidate for Islet Immunoisolation: In Vitro Biocompatibility Evaluation. Cell Transplantation, 2000, 9, 25-31.	1.2	39
98	Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone hydrogel: Implications for wound management?. Journal of Biosciences, 2000, 25, 25-30.	0.5	69
99	Improved post-cryopreservation recovery following encapsulation of islets in chitosan-alginate microcapsules. Transplantation Proceedings, 2000, 32, 824-825.	0.3	29
100	A simple microcapsule generator design for islet encapsulation. Journal of Biosciences, 1999, 24, 371-376.	0.5	20
101	Modulating experimental diabetes by treatment with cytosolic extract from the regenerating pancreas. Diabetes Research and Clinical Practice, 1999, 46, 203-211.	1.1	27