Bellinda Benhamu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808623/publications.pdf

Version: 2024-02-01

53 papers

1,718 citations

236612 25 h-index 288905 40 g-index

56 all docs 56
docs citations

56 times ranked 1939 citing authors

#	Article	IF	CITATIONS
1	Discovery of V-0219: A Small-Molecule Positive Allosteric Modulator of the Glucagon-Like Peptide-1 Receptor toward Oral Treatment for "Diabesity― Journal of Medicinal Chemistry, 2022, 65, 5449-5461.	2.9	5
2	Allosteric modulators targeting GPCRs. , 2020, , 195-241.		1
3	A new serotonin 5-HT6 receptor antagonist with procognitive activity – Importance of a halogen bond interaction to stabilize the binding. Scientific Reports, 2017, 7, 41293.	1.6	36
4	A Positive Allosteric Modulator of the Serotonin 5-HT _{2C} Receptor for Obesity. Journal of Medicinal Chemistry, 2017, 60, 9575-9584.	2.9	33
5	Multi-level suppression of receptor-PI3K-mTORC1 by fatty acid synthase inhibitors is crucial for their efficacy against ovarian cancer cells. Oncotarget, 2017, 8, 11600-11613.	0.8	43
6	Chemoproteomic Approach to Explore the Target Profile of GPCR ligands: Application to 5â€HT _{1A} and 5â€HT ₆ Receptors. Chemistry - A European Journal, 2016, 22, 1313-1321.	. 1.7	15
7	Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. International Journal of Cancer, 2015, 136, 2078-2090.	2.3	60
8	The Extracellular Entrance Provides Selectivity to Serotonin 5-HT ₇ Receptor Antagonists with Antidepressant-like Behavior in Vivo. Journal of Medicinal Chemistry, 2014, 57, 6879-6884.	2.9	15
9	Serotonin 5-HT ₆ Receptor Antagonists for the Treatment of Cognitive Deficiency in Alzheimer's Disease. Journal of Medicinal Chemistry, 2014, 57, 7160-7181.	2.9	142
10	New Serotonin 5-HT _{1A} Receptor Agonists Endowed with Antinociceptive Activity <i>iin Vivo</i> . Journal of Medicinal Chemistry, 2013, 56, 7851-7861.	2.9	27
11	New Synthetic Inhibitors of Fatty Acid Synthase with Anticancer Activity. Journal of Medicinal Chemistry, 2012, 55, 5013-5023.	2.9	57
12	The importance of solvation in the design of ligands targeting membrane proteins. MedChemComm, 2011, 2, 160.	3.5	11
13	Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopyâ€. Journal of Medicinal Chemistry, 2011, 54, 1096-1100.	2.9	6
14	New Serotonin 5-HT _{1A} Receptor Agonists with Neuroprotective Effect against Ischemic Cell Damage. Journal of Medicinal Chemistry, 2011, 54, 7986-7999.	2.9	36
15	A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines. Breast Cancer Research, 2011, 13, R131.	2.2	75
16	Benzimidazole Derivatives as New Serotonin 5-HT ₆ Receptor Antagonists. Molecular Mechanisms of Receptor Inactivation. Journal of Medicinal Chemistry, 2010, 53, 1357-1369.	2.9	61
17	Development of Fluorescent Ligands for the Human 5-HT _{1A} Receptor. ACS Medicinal Chemistry Letters, 2010, 1, 249-253.	1.3	25
18	Development of Molecular Probes for the Human 5-HT6Receptor. Journal of Medicinal Chemistry, 2010, 53, 7095-7106.	2.9	14

#	Article	IF	CITATIONS
19	Novel Inhibitors of Fatty Acid Synthase with Anticancer Activity. Clinical Cancer Research, 2009, 15, 7608-7615.	3.2	85
20	Synthesis of New Serotonin 5-HT ₇ Receptor Ligands. Determinants of 5-HT ₇ /5-HT _{/1A} Receptor Selectivity. Journal of Medicinal Chemistry, 2009, 52, 2384-2392.	2.9	48
21	Anxiolytic-like effect of a serotonergic ligand with high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors. European Journal of Pharmacology, 2005, 511, 9-19.	1.7	20
22	Synthesis and Structureâ 'Activity Relationships of a New Model of Arylpiperazines. 8.1 Computational Simulation of Ligandâ 'Receptor Interaction of 5-HT1AR Agonists with Selectivity over $\hat{l}\pm 1$ -Adrenoceptors. Journal of Medicinal Chemistry, 2005, 48, 2548-2558.	2.9	59
23	A Three-Dimensional Pharmacophore Model for 5-Hydroxytryptamine6(5-HT6) Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 4216-4219.	2.9	91
24	Serotonin 5-HT7 Receptor Antagonists. Current Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 203-214.	0.6	7
25	Design and Synthesis of New Benzimidazole-Arylpiperazine Derivatives Acting as Mixed 5-HT1A/5-HT3 Ligands ChemInform, 2004, 35, no.	0.1	1
26	Synthesis and structure–activity relationships of a new model of arylpiperazines. Part 7: Study of the influence of lipophilic factors at the terminal amide fragment on 5-HT1A affinity/selectivity. Bioorganic and Medicinal Chemistry, 2004, 12, 1551-1557.	1.4	22
27	Benzimidazole derivatives. Part 5: Design and synthesis of new benzimidazole–arylpiperazine derivatives acting as mixed 5-HT1A/5-HT3 ligands. Bioorganic and Medicinal Chemistry, 2004, 12, 5181-5191.	1.4	11
28	Benzimidazole derivatives. 4. The recognition of the voluminous substituent attached to the basic amino group of 5-HT4receptor antagonists. Journal of Computer-Aided Molecular Design, 2003, 17, 515-524.	1.3	5
29	New benzimidazole derivatives: selective and orally active 5-HT3 receptor antagonists. European Journal of Pharmacology, 2003, 462, 99-107.	1.7	6
30	Design and synthesis of S-(â°)-2-[[4-(napht-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-a]pyrazine (CSP-2503) using computational simulation. A 5-HT1A receptor agonist. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1429-1432.	1.0	16
31	Design and synthesis of new benzimidazole-arylpiperazine derivatives acting as mixed 5-HT1A/5-HT3 ligands. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3177-3180.	1.0	13
32	Optimization of the Pharmacophore Model for 5-HT7R Antagonism. Design and Synthesis of New Naphtholactam and Naphthosultam Derivatives. Journal of Medicinal Chemistry, 2003, 46, 5638-5650.	2.9	73
33	Design, Synthesis and Pharmacological Evaluation of 5-Hydroxytryptamine1aReceptor Ligands to Explore the Three-Dimensional Structure of the Receptor. Molecular Pharmacology, 2002, 62, 15-21.	1.0	49
34	Benzimidazole Derivatives. 3. 3D-QSAR/CoMFA Model and Computational Simulation for the Recognition of 5-HT4Receptor Antagonists. Journal of Medicinal Chemistry, 2002, 45, 4806-4815.	2.9	35
35	Biochemical, Electrophysiological and Neurohormonal Studies with B-20991, a Selective 5-HT _{1A} Receptor Agonist. Pharmacology, 2001, 62, 234-242.	0.9	4
36	3-D-QSAR/CoMFA and recognition models of benzimidazole derivatives at the 5-HT4 receptor. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2807-2811.	1.0	18

#	Article	IF	Citations
37	Computational model of the complex between GR113808 and the 5-HT4 receptor guided by site-directed mutagenesis and the crystal structure of rhodopsin. Journal of Computer-Aided Molecular Design, 2001, 15, 1025-1033.	1.3	20
38	Study of the bioactive conformation of novel 5-HT4 receptor ligands: influence of an intramolecular hydrogen bond. Tetrahedron, 2001, 57, 6745-6749.	1.0	10
39	Pd(0) Amination of Benzimidazoles as an Efficient Method towards New (Benzimidazolyl)piperazines with High Affinity for the 5-HT1A Receptor. Tetrahedron, 2000, 56, 3245-3253.	1.0	25
40	Synthesis of Thiabicyclic Heterocycles Through Free Radical Cyclization of \hat{l}^2 -Thioacrylates. Tetrahedron, 2000, 56, 3425-3437.	1.0	18
41	First pharmacophoric hypothesis for 5-HT 7 antagonism. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1097-1100.	1.0	52
42	Synthesis of new (benzimidazolyl)piperazines with affinity for the 5-HT1A receptor via Pd(0) amination of bromobenzimidazoles. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2339-2342.	1.0	14
43	Benzimidazole derivatives. Part 1: Synthesis and structure–activity relationships of new benzimidazole-4-carboxamides and carboxylates as potent and selective 5-HT4 receptor antagonists. Bioorganic and Medicinal Chemistry, 1999, 7, 2271-2281.	1.4	36
44	Benzimidazole Derivatives. 2. Synthesis and Structureâ ⁻ 'Activity Relationships of New Azabicyclic Benzimidazole-4-carboxylic Acid Derivatives with Affinity for Serotoninergic 5-HT3Receptors. Journal of Medicinal Chemistry, 1999, 42, 5020-5028.	2.9	43
45	Synthesis and Structureâ^'Activity Relationships of a New Model of Arylpiperazines. 2.1Three-Dimensional Quantitative Structureâ^'Activity Relationships of Hydantoinâ^'Phenylpiperazine Derivatives with Affinity for 5-HT1Aand α1Receptors. A Comparison of CoMFA Models2. Journal of Medicinal Chemistry, 1997, 40, 1648-1656.	2.9	72
46	Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites. Journal of Computer-Aided Molecular Design, 1997, 11, 589-599.	1.3	32
47	Synthesis and Structureâ^'Activity Relationships of a New Model of Arylpiperazines. 1. 2-[[4-(o-Methoxyphenyl)piperazin-1-yl]methyl]-1,3- dioxoperhydroimidazo[1,5-a]pyridine:Â A Selective 5-HT1AReceptor Agonist. Journal of Medicinal Chemistry, 1996, 39, 4439-4450.	2.9	66
48	Enthalpic (electrostatic) contribution to the chelate effect: a correlation between ligand binding constant and a specific hydrogen bond strength in complexes of glycopeptide antibiotics with cell wall analogues. Journal of the Chemical Society Perkin Transactions 1, 1996, , 2781.	0.9	30
49	2-[4-(o-methoxyphenyl)piperazin-1-ylmethyl]-1,3-dioxoperhydroimidazo[1,5-a]pyridine as a new selective 5-HT1A receptor ligand. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 689-694.	1.0	11
50	Novel benzimidazole-4-carboxylic acid derivatives as potent and selective 5-HT3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1195-1198.	1.0	11
51	Burial of Hydrocarbon Causes Cooperative Enhancement of Electrostatic Binding. Angewandte Chemie International Edition in English, 1995, 34, 1483-1485.	4.4	29
52	Stereospecificity in the Reaction of Tetrahydrobetacarboline-3-carboxylic Acids with Isocyanates and Isothiocyanates. Kinetic vs Thermodynamic Control. Journal of Organic Chemistry, 1994, 59, 1583-1585.	1.7	21
53	Reaction of 6-HydroxytetrahydroBETAcarboline-3-carboxylic Acids with Isocyanates and Isothiocyanates Chemical and Pharmaceutical Bulletin, 1994, 42, 2108-2112.	0.6	3