## EncarnaciÃ<sup>3</sup>n Capilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808591/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                             | IF                | CITATIONS      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 1  | The autophagy response during adipogenesis of primary cultured rainbow trout (Oncorhynchus) Tj ETQq1 1 0.78 2022, 258, 110700.                                                                                                                                                                                      | 4314 rgB1<br>0.7  | /Overlock<br>2 |
| 2  | Effect of Dietary Plant Feedstuffs and Protein/Carbohydrate Ratio on Gilthead Seabream (Sparus) Tj ETQq0 0 0 rg                                                                                                                                                                                                     | BT/Overlo         | ock 10 Tf 50   |
| 3  | Effects of Feeding Frequency and Dietary Protein/Carbohydrate Ratios on Gilthead Seabream (Sparus) Tj ETQq1 1                                                                                                                                                                                                       | . 0,784314<br>1.1 | l rgBT /Over   |
| 4  | Feeding frequency and dietary protein/carbohydrate ratio affect feed intake and appetite<br>regulation-related genes expression in gilthead seabream (Sparus aurata). Comparative Biochemistry<br>and Physiology Part A, Molecular & Integrative Physiology, 2022, 267, 111168.                                     | 0.8               | 0              |
| 5  | Dietary protein/carbohydrate ratio and feeding frequency affect feed utilization, intermediary<br>metabolism, and economic efficiency of gilthead seabream (Sparus aurata) juveniles. Aquaculture,<br>2022, 554, 738182.                                                                                            | 1.7               | 9              |
| 6  | Dietary supplementation with Aloe vera induces hepatic steatosis and oxidative stress together with a<br>disruption of cellular signaling pathways and lipid metabolism related genes' expression in gilthead<br>sea bream (Sparus aurata). Aquaculture, 2022, 559, 738433.                                         | 1.7               | 6              |
| 7  | Dietary protein source and protein/carbohydrate ratio affects appetite regulation-related genes expression in gilthead seabream (Sparus aurata). Aquaculture, 2021, 533, 736142.                                                                                                                                    | 1.7               | 11             |
| 8  | Musculoskeletal Growth Modulation in Gilthead Sea Bream Juveniles Reared at High Water<br>Temperature and Fed with Palm and Rapeseed Oils-Based Diets. Animals, 2021, 11, 260.                                                                                                                                      | 1.0               | 4              |
| 9  | The probiotic Lactobacillus rhamnosus mimics the dark-driven regulation of appetite markers and melatonin receptors' expression in zebrafish (Danio rerio) larvae: Understanding the role of the gut microbiome. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 256. 110634. | 0.7               | 14             |
| 10 | Recombinant Bovine Growth Hormone-Induced Metabolic Remodelling Enhances Growth of Gilthead<br>Sea-Bream (Sparus aurata): Insights from Stable Isotopes Composition and Proteomics. International<br>Journal of Molecular Sciences, 2021, 22, 13107.                                                                | 1.8               | 2              |
| 11 | Effects of different dietary vegetable oils on growth and intestinal performance, lipid metabolism and flesh quality in gilthead sea bream. Aquaculture, 2020, 519, 734881.                                                                                                                                         | 1.7               | 25             |
| 12 | Photoperiod Manipulation Affects Transcriptional Profile of Genes Related to Lipid Metabolism and<br>Apoptosis in Zebrafish (Danio rerio) Larvae: Potential Roles of Gut Microbiota. Microbial Ecology,<br>2020, 79, 933-946.                                                                                       | 1.4               | 16             |
| 13 | Gilthead seabream (Sparus aurata) in vitro adipogenesis and its endocrine regulation by leptin,<br>ghrelin, and insulin. Comparative Biochemistry and Physiology Part A, Molecular & Integrative<br>Physiology, 2020, 249, 110772.                                                                                  | 0.8               | 3              |
| 14 | Genistein Induces Adipogenic and Autophagic Effects in Rainbow Trout (Oncorhynchus mykiss) Adipose<br>Tissue: In Vitro and In Vivo Models. International Journal of Molecular Sciences, 2020, 21, 5884.                                                                                                             | 1.8               | 7              |
| 15 | The combination of palm and rapeseed oils emerges as a good dietary alternative for optimal growth<br>and balanced lipid accumulation in juvenile gilthead sea bream reared at an elevated temperature.<br>Aquaculture, 2020, 526, 735396.                                                                          | 1.7               | 6              |
| 16 | Short-Term Responses to Fatty Acids on Lipid Metabolism and Adipogenesis in Rainbow Trout<br>(Oncorhynchus mykiss). International Journal of Molecular Sciences, 2020, 21, 1623.                                                                                                                                    | 1.8               | 9              |
| 17 | Regulatory mechanisms involved in muscle and bone remodeling during refeeding in gilthead sea<br>bream. Scientific Reports, 2020, 10, 184.                                                                                                                                                                          | 1.6               | 19             |

18Editorial: Nutritional and Environmental Modulation of the Endocrine System: Effects on Metabolism<br/>and Growth. Frontiers in Endocrinology, 2019, 10, 354.1.50

| #  | Article                                                                                                                                                                                                                                           | IF                  | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| 19 | Gene expression analyses in malformed skeletal structures of gilthead sea bream ( <i>Sparus) Tj ETQq1 1 0.7843</i>                                                                                                                                | 14 <sub>rg</sub> BT | /Overlock 10 |
| 20 | Fatty acids from fish or vegetable oils promote the adipogenic fate of mesenchymal stem cells derived from gilthead sea bream bone potentially through different pathways. PLoS ONE, 2019, 14, e0215926.                                          | 1.1                 | 20           |
| 21 | A long-term growth hormone treatment stimulates growth and lipolysis in gilthead sea bream<br>juveniles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology,<br>2019, 232, 67-78.                                 | 0.8                 | 18           |
| 22 | Temperature Affects Musculoskeletal Development and Muscle Lipid Metabolism of Gilthead Sea Bream<br>(Sparus aurata). Frontiers in Endocrinology, 2019, 10, 173.                                                                                  | 1.5                 | 24           |
| 23 | Effects of β2-adrenoceptor agonists on gilthead sea bream (Sparus aurata) cultured muscle cells.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 227,<br>179-193.                                    | 0.8                 | 5            |
| 24 | Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis<br>in fingerlings of gilthead sea bream (Sparus aurata). General and Comparative Endocrinology, 2018,<br>257, 192-202.                             | 0.8                 | 36           |
| 25 | Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish. BMC Evolutionary Biology, 2018, 18, 191.                                                                                            | 3.2                 | 2            |
| 26 | Breeding selection of rainbow trout for high or low muscle adiposity differentially affects lipogenic capacity and lipid mobilization strategies to cope with food deprivation. Aquaculture, 2018, 495, 161-171.                                  | 1.7                 | 11           |
| 27 | Temperature responsiveness of gilthead sea bream bone; an in vitro and in vivo approach. Scientific<br>Reports, 2018, 8, 11211.                                                                                                                   | 1.6                 | 21           |
| 28 | Ghrelin and Its Receptors in Gilthead Sea Bream: Nutritional Regulation. Frontiers in Endocrinology, 2018, 9, 399.                                                                                                                                | 1.5                 | 17           |
| 29 | Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture, 2017, 467, 28-40.                                                                                                                                    | 1.7                 | 102          |
| 30 | Moderate and sustained exercise modulates muscle proteolytic and myogenic markers in gilthead sea<br>bream ( <i>Sparus aurata</i> ). American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2017, 312, R643-R653. | 0.9                 | 22           |
| 31 | Tributyltin and triphenyltin exposure promotes in vitro adipogenic differentiation but alters the adipocyte phenotype in rainbow trout. Aquatic Toxicology, 2017, 188, 148-158.                                                                   | 1.9                 | 27           |
| 32 | Gene expression profile during proliferation and differentiation of rainbow trout adipocyte precursor cells. BMC Genomics, 2017, 18, 347.                                                                                                         | 1.2                 | 33           |
| 33 | Proteolytic systems' expression during myogenesis and transcriptional regulation by amino acids in gilthead sea bream cultured muscle cells. PLoS ONE, 2017, 12, e0187339.                                                                        | 1.1                 | 20           |
| 34 | Caffeic acid and hydroxytyrosol have anti-obesogenic properties in zebrafish and rainbow trout models. PLoS ONE, 2017, 12, e0178833.                                                                                                              | 1.1                 | 13           |
| 35 | Adipogenic Gene Expression in Gilthead Sea Bream Mesenchymal Stem Cells from Different Origin.<br>Frontiers in Endocrinology, 2016, 7, 113.                                                                                                       | 1.5                 | 17           |
| 36 | Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comparative<br>Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 199, 67-73.                                                           | 0.7                 | 24           |

| #  | Article                                                                                                                                                                                                                                                                          | IF                 | CITATIONS            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 37 | Effects of sustained exercise on GH-IGFs axis in gilthead sea bream ( <i>Sparus aurata</i> ). American<br>Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R313-R322.                                                                       | 0.9                | 32                   |
| 38 | Characterization data of gilthead sea bream (Sparus aurata) IGF-I receptors (IGF-IRa/Rb). Data in Brief, 2016, 6, 507-513.                                                                                                                                                       | 0.5                | 4                    |
| 39 | IGF-I and IGF-II effects on local IGF system and signaling pathways in gilthead sea bream (Sparus aurata)<br>cultured myocytes. General and Comparative Endocrinology, 2016, 232, 7-16.                                                                                          | 0.8                | 33                   |
| 40 | Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream<br>(Sparus aurata). PLoS ONE, 2016, 11, e0147618.                                                                                                                            | 1.1                | 48                   |
| 41 | Editorial: Control of Adipocyte Differentiation and Metabolism. Frontiers in Endocrinology, 2015, 6, 132.                                                                                                                                                                        | 1.5                | 0                    |
| 42 | Roles of leptin and ghrelin in adipogenesis and lipid metabolism of rainbow trout adipocytes in vitro.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 188,<br>40-48.                                                               | 0.8                | 33                   |
| 43 | Characterisation and expression analysis of cathepsins and ubiquitin-proteasome genes in gilthead sea<br>bream (Sparus aurata) skeletal muscle. BMC Research Notes, 2015, 8, 149.                                                                                                | 0.6                | 36                   |
| 44 | Growth-promoting effects of sustained swimming in fingerlings of gilthead sea bream (Sparus aurata) Tj ETQqO 1<br>185, 859-868.                                                                                                                                                  | 0 0 rgBT /0<br>0.7 | Overlock 10 Tr<br>43 |
| 45 | Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin<br>expression and secretion in rainbow trout. General and Comparative Endocrinology, 2015, 210, 114-123.                                                                       | 0.8                | 50                   |
| 46 | Structural and Functional Evolution of Glucose Transporter 4 (GLUT4): A Look at GLUT4 in Fish. , 2014, , .                                                                                                                                                                       |                    | 7                    |
| 47 | Characterisation and expression of myogenesis regulatory factors during in vitro myoblast<br>development and in vivo fasting in the gilthead sea bream (Sparus aurata). Comparative Biochemistry<br>and Physiology Part A, Molecular & Integrative Physiology, 2014, 167, 90-99. | 0.8                | 52                   |
| 48 | Adipose tissue and liver metabolic responses to different levels of dietary carbohydrates in gilthead<br>sea bream (Sparus aurata). Comparative Biochemistry and Physiology Part A, Molecular &<br>Integrative Physiology, 2014, 175, 72-81.                                     | 0.8                | 39                   |
| 49 | IGF-I and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes. General and Comparative Endocrinology, 2014, 205, 296-304.                                                                                     | 0.8                | 59                   |
| 50 | Interplay of adiponectin, TNFα and insulin on gene expression, glucose uptake and PPARγ, AKT and TOR<br>pathways in rainbow trout cultured adipocytes. General and Comparative Endocrinology, 2014, 205,<br>218-225.                                                             | 0.8                | 31                   |
| 51 | The special issue on the 17th International Congress of Comparative Endocrinology, (ICCE 2013).<br>General and Comparative Endocrinology, 2014, 205, 1-3.                                                                                                                        | 0.8                | 0                    |
| 52 | Effect of guar gum on glucose and lipid metabolism in white sea bream Diplodus sargus. Fish<br>Physiology and Biochemistry, 2013, 39, 159-169.                                                                                                                                   | 0.9                | 13                   |
| 53 | Characterization and endocrine regulation of proliferation and differentiation of primary cultured preadipocytes from gilthead sea bream (Sparus aurata). Domestic Animal Endocrinology, 2013, 45, 1-10.                                                                         | 0.8                | 26                   |
| 54 | Insulin-like growth factors effects on the expression of myogenic regulatory factors in gilthead sea bream muscle cells. General and Comparative Endocrinology, 2013, 188, 151-158.                                                                                              | 0.8                | 49                   |

| #  | Article                                                                                                                                                                                                                                                                                                                          | IF               | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 55 | Characterisation and Expression of Calpain Family Members in Relation to Nutritional Status, Diet<br>Composition and Flesh Texture in Gilthead Sea Bream (Sparus aurata). PLoS ONE, 2013, 8, e75349.                                                                                                                             | 1.1              | 50             |
| 56 | Metabolic Effects of Insulin and IGFs on Gilthead Sea Bream (Sparus aurata) Muscle Cells. Frontiers in<br>Endocrinology, 2012, 3, 55.                                                                                                                                                                                            | 1.5              | 41             |
| 57 | Regulation of lipoprotein lipase gene expression by insulin and troglitazone in rainbow trout<br>(Oncorhynchus mykiss) adipocyte cells in culture. Comparative Biochemistry and Physiology Part A,<br>Molecular & Integrative Physiology, 2012, 161, 83-88.                                                                      | 0.8              | 31             |
| 58 | Insulin and IGF-I effects on the proliferation of an osteoblast primary culture from sea bream (Sparus) Tj ETQq0 0                                                                                                                                                                                                               | 0 rgBT /O<br>0:8 | verlock 10 Tf  |
| 59 | Differential effects on proliferation of GH and IGFs in sea bream (Sparus aurata) cultured myocytes.<br>General and Comparative Endocrinology, 2011, 172, 44-49.                                                                                                                                                                 | 0.8              | 52             |
| 60 | Development of diet-induced fatty liver disease in the aging mouse is suppressed by brief daily exposure to low-magnitude mechanical signals. International Journal of Obesity, 2010, 34, 401-405.                                                                                                                               | 1.6              | 16             |
| 61 | Insulin and insulin-like growth factor I signaling pathways in rainbow trout (Oncorhynchus mykiss)<br>during adipogenesis and their implication in glucose uptake. American Journal of Physiology -<br>Regulatory Integrative and Comparative Physiology, 2010, 299, R33-R41.                                                    | 0.9              | 47             |
| 62 | High basal cell surface levels of fish GLUT4 are related to reduced sensitivity of insulin-induced translocation toward GGA and AS160 inhibition in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E329-E336.                                                                             | 1.8              | 10             |
| 63 | Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose<br>transporter gene (SLC2A2) in zebrafish. American Journal of Physiology - Regulatory Integrative and<br>Comparative Physiology, 2009, 297, R1570-R1581.                                                                                | 0.9              | 42             |
| 64 | In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Medical Engineering and Physics, 2009, 31, 34-41.                                                                                                                                                            | 0.8              | 94             |
| 65 | Mechanical Stimulation of Mesenchymal Stem Cell Proliferation and Differentiation Promotes<br>Osteogenesis While Preventing Dietary-Induced Obesity. Journal of Bone and Mineral Research, 2009,<br>24, 50-61.                                                                                                                   | 3.1              | 232            |
| 66 | Development of Hepatocellular Carcinoma in <i>lqgap2</i> -Deficient Mice Is IQGAP1 Dependent.<br>Molecular and Cellular Biology, 2008, 28, 1489-1502.                                                                                                                                                                            | 1.1              | 112            |
| 67 | Hepatocellular carcinoma in IQGAP2-deficient mice and evaluation of IQGAP2 as a potential novel tumor suppressor gene. Journal of Clinical Oncology, 2008, 26, 4600-4600.                                                                                                                                                        | 0.8              | 0              |
| 68 | Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude<br>mechanical signals. Proceedings of the National Academy of Sciences of the United States of America,<br>2007, 104, 17879-17884.                                                                                                 | 3.3              | 255            |
| 69 | Physiological regulation of glucose transporter (GLUT4) protein content in brown trout (Salmo) Tj ETQq1 1 0.784                                                                                                                                                                                                                  | 4314 rgBT<br>0.8 | - /Qyerlock 10 |
| 70 | The Glucose Transporter 4 FQQI Motif Is Necessary for Akt Substrate of 160-Kilodalton-Dependent<br>Plasma Membrane Translocation But Not Golgi-Localized Î <sup>3</sup> -Ear-Containing Arf-Binding<br>Protein-Dependent Entry into the Insulin-Responsive Storage Compartment. Molecular Endocrinology,<br>2007, 21, 3087-3099. | 3.7              | 20             |
| 71 | Fish Glucose Transporter (GLUT)-4 Differs from Rat GLUT4 in Its Traffic Characteristics but Can<br>Translocate to the Cell Surface in Response to Insulin in Skeletal Muscle Cells. Endocrinology, 2007,<br>148, 5248-5257.                                                                                                      | 1.4              | 48             |
| 72 | Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of gilthead sea bream (Sparus aurata). Aquaculture, 2007, 267, 188-198.                                                                                                                                             | 1.7              | 49             |

| #  | Article                                                                                                                                                                                                                                                           | IF                 | CITATIONS             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|
| 73 | Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus) Tj ETQq1 1<br>151-159.                                                                                                                                      | 0.784314 r<br>0.7  | gBT /Overlock<br>95   |
| 74 | Application of a daily low magnitude mechanical signal reduces adiposity in male mice. , 2007, , .                                                                                                                                                                |                    | 0                     |
| 75 | Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2007, 150, 462-472.                                                             | 0.8                | 115                   |
| 76 | Response of hexokinase enzymes and the insulin system to dietary carbohydrates in the common carp,Cyprinus carpio. Reproduction, Nutrition, Development, 2004, 44, 233-242.                                                                                       | 1.9                | 37                    |
| 77 | Entry of Newly Synthesized GLUT4 into the Insulin-responsive Storage Compartment Is Dependent upon<br>Both the Amino Terminus and the Large Cytoplasmic Loop. Journal of Biological Chemistry, 2004, 279,<br>37505-37511.                                         | 1.6                | 30                    |
| 78 | Functional characterization of an insulin-responsive glucose transporter (GLUT4) from fish adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E348-E357.                                                                   | 1.8                | 53                    |
| 79 | Glucagon and insulin response to dietary carbohydrate in rainbow trout (Oncorhynchus mykiss).<br>General and Comparative Endocrinology, 2004, 139, 48-54.                                                                                                         | 0.8                | 48                    |
| 80 | Metabolic responses to glucoprivation induced by 2-deoxy-D-glucose in Brycon cephalus (Teleostei,) Tj ETQq0 (<br>Physiology, 2004, 174, 91-96.                                                                                                                    | 0 0 rgBT /0<br>0.7 | overlock 10 Tf 5<br>6 |
| 81 | Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regulatory Peptides, 2003, 110, 123-132.                                                                       | 1.9                | 76                    |
| 82 | Physiological regulation of the expression of a GLUT4 homolog in fish skeletal muscle. American<br>Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E44-E49.                                                                                      | 1.8                | 57                    |
| 83 | Metabolic changes in Brycon cephalus (Teleostei, Characidae) during post-feeding and fasting.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 132,<br>467-476.                                                       | 0.8                | 47                    |
| 84 | Insights into Insulin and Glucagon Responses in Fish. Fish Physiology and Biochemistry, 2002, 27, 205-216.                                                                                                                                                        | 0.9                | 68                    |
| 85 | Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout<br>(Oncorhynchus mykiss) by a single meal with glucose. Comparative Biochemistry and Physiology - B<br>Biochemistry and Molecular Biology, 2001, 128, 275-283. | 0.7                | 131                   |
| 86 | Title is missing!. Fish Physiology and Biochemistry, 2001, 24, 31-39.                                                                                                                                                                                             | 0.9                | 13                    |
| 87 | Dietary fructose does not specifically induce hepatic glucokinase expression in rainbow trout.<br>Journal of Fish Biology, 2001, 59, 455-458.                                                                                                                     | 0.7                | 5                     |
| 88 | Fish Insulin, IGF-I and IGF-II Receptors: A Phylogenetic Approach. American Zoologist, 2000, 40, 223-233.                                                                                                                                                         | 0.7                | 10                    |
| 89 | Fish Insulin, IGF-I and IGF-II Receptors: A Phylogenetic Approach1. American Zoologist, 2000, 40, 223-233.                                                                                                                                                        | 0.7                | 29                    |
| 90 | Molecular identification of a glucose transporter from fish muscle1. FEBS Letters, 2000, 481, 266-270.                                                                                                                                                            | 1.3                | 80                    |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Insulin and IGF-I receptors in trout adipose tissue are physiologically regulated by circulating hormone levels. Journal of Experimental Biology, 2000, 203, 1153-1159. | 0.8 | 41        |
| 92 | Insulin and IGF-I receptors in trout adipose tissue are physiologically regulated by circulating hormone levels. Journal of Experimental Biology, 2000, 203, 1153-9.    | 0.8 | 39        |
| 93 | Research on Skeletal Muscle Diseases Using Pluripotent Stem Cells. , 0, , .                                                                                             |     | 0         |