Xuexian Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808569/publications.pdf

Version: 2024-02-01

361413 434195 1,077 34 20 31 citations h-index g-index papers 34 34 34 1161 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CsIVP Modulates Low Nitrogen and High-Temperature Resistance in Cucumber. Plant and Cell Physiology, 2022, 63, 605-617.	3.1	3
2	Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Frontiers in Plant Science, 2022, 13, 802274.	3.6	51
3	Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany, 2022, 200, 104909.	4.2	34
4	Foxtail millet [Setaria italica (L.) Beauv.] over-accumulates ammonium under low nitrogen supply. Plant Physiology and Biochemistry, 2022, 185, 35-44.	5.8	6
5	Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea. Agriculture (Switzerland), 2021, 11, 120.	3.1	6
6	<i>Cis-</i> regulation of the amino acid transporter genes <i>ZmAAP2</i> and <i>ZmLHT1</i> by ZmPHR1 transcription factors in maize ear under phosphate limitation. Journal of Experimental Botany, 2021, 72, 3846-3863.	4.8	9
7	Sucrose triggers a novel signaling cascade promoting <i>Bacillus subtilis</i> rhizosphere colonization. ISME Journal, 2021, 15, 2723-2737.	9.8	63
8	Green Labelled Rice Shows a Higher Nutritional and Physiochemical Quality Than Conventional Rice in China. Foods, 2021, 10, 915.	4.3	7
9	Severity of zinc and iron malnutrition linked to low intake through a staple crop: a case study in east-central Pakistan. Environmental Geochemistry and Health, 2021, 43, 4219-4233.	3.4	23
10	Hydrogeochemical Characteristics and Quality Assessment of Mine Water in Coalfield Area, Guizhou Province, Southwest China. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1087-1094.	2.7	6
11	Magnesium Limitation Leads to Transcriptional Down-Tuning of Auxin Synthesis, Transport, and Signaling in the Tomato Root. Frontiers in Plant Science, 2021, 12, 802399.	3.6	12
12	Green Food Development in China: Experiences and Challenges. Agriculture (Switzerland), 2020, 10, 614.	3.1	22
13	Adaptation of Foxtail Millet (Setaria italica L.) to Abiotic Stresses: A Special Perspective of Responses to Nitrogen and Phosphate Limitations. Frontiers in Plant Science, 2020, 11, 187.	3.6	42
14	CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biology, 2020, 18, e3000671.	5.6	30
15	<i>ZmCCD10a</i> Encodes a Distinct Type of Carotenoid Cleavage Dioxygenase and Enhances Plant Tolerance to Low Phosphate. Plant Physiology, 2020, 184, 374-392.	4.8	25
16	Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. Planta, 2020, 251, 66.	3.2	27
17	Development and challenges of green food in China. Frontiers of Agricultural Science and Engineering, 2020, 7, 56.	1.4	10
18	A Functional Allele of <i>CsFUL1</i> Regulates Fruit Length through Repressing <i>CsSUP</i> and Inhibiting Auxin Transport in Cucumber. Plant Cell, 2019, 31, 1289-1307.	6.6	84

#	Article	IF	CITATIONS
19	Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Frontiers in Plant Science, 2019, 10, 1727.	3.6	142
20	A Larger Root System Is Coupled With Contrasting Expression Patterns of Phosphate and Nitrate Transporters in Foxtail Millet [Setaria italica (L.) Beauv.] Under Phosphate Limitation. Frontiers in Plant Science, 2018, 9, 1367.	3.6	14
21	Foxtail Millet [Setaria italica (L.) Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression. Frontiers in Plant Science, 2018, 9, 205.	3.6	41
22	AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Scientific Reports, 2016, 6, 24778.	3.3	40
23	Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cellular and Molecular Biology Letters, 2016, 21, 7.	7.0	51
24	Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening Â. Plant Physiology, 2016, 171, 1209-1229.	4.8	24
25	Aberrant Meiotic Modulation Partially Contributes to the Lower Germination Rate of Pollen Grains in Maize (Zea maysL.) Under Low Nitrogen Supply. Plant and Cell Physiology, 2016, 58, pcw195.	3.1	4
26	Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation. Planta, 2016, 244, 111-124.	3.2	25
27	ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta, 2016, 243, 1407-1418.	3.2	24
28	A Large and Deep Root System Underlies High Nitrogen-Use Efficiency in Maize Production. PLoS ONE, 2015, 10, e0126293.	2.5	53
29	ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015, 242, 935-949.	3.2	27
30	Asymmetric transcriptomic signatures between the cob and florets in the maize ear under optimal- and low-nitrogen conditions at silking, and functional characterization of amino acid transporters ZmAAP4 and ZmVAAT3. Journal of Experimental Botany, 2015, 66, 6149-6166.	4.8	26
31	A novel morphological response of maize (<i>Zea mays</i>) adult roots to heterogeneous nitrate supply revealed by a splitâ€root experiment. Physiologia Plantarum, 2014, 150, 133-144.	5.2	49
32	Proteomic Analysis Revealed Nitrogen-mediated Metabolic, Developmental, and Hormonal Regulation of Maize (Zea mays L.) Ear Growth. Journal of Experimental Botany, 2012, 63, 5275-5288.	4.8	55
33	Maize cob plus husks mimics the grain sink to stimulate nutrient uptake by roots. Field Crops Research, 2012, 130, 38-45.	5.1	28
34	Nitrogen Under―and Overâ€supply Induces Distinct Protein Responses in Maize Xylem Sap ^F . Journal of Integrative Plant Biology, 2012, 54, 374-387.	8.5	14