Xuexian Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808569/publications.pdf Version: 2024-02-01

XIIEVIAN LI

#	Article	IF	CITATIONS
1	Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Frontiers in Plant Science, 2019, 10, 1727.	3.6	142
2	A Functional Allele of <i>CsFUL1</i> Regulates Fruit Length through Repressing <i>CsSUP</i> and Inhibiting Auxin Transport in Cucumber. Plant Cell, 2019, 31, 1289-1307.	6.6	84
3	Sucrose triggers a novel signaling cascade promoting <i>Bacillus subtilis</i> rhizosphere colonization. ISME Journal, 2021, 15, 2723-2737.	9.8	63
4	Proteomic Analysis Revealed Nitrogen-mediated Metabolic, Developmental, and Hormonal Regulation of Maize (Zea mays L.) Ear Growth. Journal of Experimental Botany, 2012, 63, 5275-5288.	4.8	55
5	A Large and Deep Root System Underlies High Nitrogen-Use Efficiency in Maize Production. PLoS ONE, 2015, 10, e0126293.	2.5	53
6	Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cellular and Molecular Biology Letters, 2016, 21, 7.	7.0	51
7	Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Frontiers in Plant Science, 2022, 13, 802274.	3.6	51
8	A novel morphological response of maize (<i>Zea mays</i>) adult roots to heterogeneous nitrate supply revealed by a splitâ€root experiment. Physiologia Plantarum, 2014, 150, 133-144.	5.2	49
9	Adaptation of Foxtail Millet (Setaria italica L.) to Abiotic Stresses: A Special Perspective of Responses to Nitrogen and Phosphate Limitations. Frontiers in Plant Science, 2020, 11, 187.	3.6	42
10	Foxtail Millet [Setaria italica (L.) Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression. Frontiers in Plant Science, 2018, 9, 205.	3.6	41
11	AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Scientific Reports, 2016, 6, 24778.	3.3	40
12	Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany, 2022, 200, 104909.	4.2	34
13	CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biology, 2020, 18, e3000671.	5.6	30
14	Maize cob plus husks mimics the grain sink to stimulate nutrient uptake by roots. Field Crops Research, 2012, 130, 38-45.	5.1	28
15	ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015, 242, 935-949.	3.2	27
16	Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. Planta, 2020, 251, 66.	3.2	27
17	Asymmetric transcriptomic signatures between the cob and florets in the maize ear under optimal- and low-nitrogen conditions at silking, and functional characterization of amino acid transporters ZmAAP4 and ZmVAAT3. Journal of Experimental Botany, 2015, 66, 6149-6166.	4.8	26
18	Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation. Planta, 2016, 244, 111-124.	3.2	25

XUEXIAN LI

19 20	CCD10a (<i>i</i>) Encodes a Distinct Type of Carotenoid Cleavage Dioxygenase and Enhances Plant Tolerance to Low Phosphate. Plant Physiology, 2020, 184, 374-392. Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening Â. Plant Physiology, 2016, 171, 1209-1229. ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta, 2016, 243, 1407-1418. Severity of zinc and iron malnutrition linked to low intake through a staple crop: a case study in the population of the planta for the	4.8 4.8 3.2	25 24 24
20	Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening Â. Plant Physiology, 2016, 171, 1209-1229. ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta, 2016, 243, 1407-1418. Severity of zinc and iron malnutrition linked to low intake through a staple crop: a case study in	4.8 3.2	24
	ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta, 2016, 243, 1407-1418. Severity of zinc and iron malnutrition linked to low intake through a staple crop: a case study in	3.2	24
21	Severity of zinc and iron malnutrition linked to low intake through a staple crop: a case study in		
22	east-central Pakistan. Environmental Geochemistry and Health, 2021, 43, 4219-4233.	3.4	23
23	Green Food Development in China: Experiences and Challenges. Agriculture (Switzerland), 2020, 10, 614.	3.1	22
24	Nitrogen Under―and Overâ€supply Induces Distinct Protein Responses in Maize Xylem Sap ^F . Journal of Integrative Plant Biology, 2012, 54, 374-387.	8.5	14
25	A Larger Root System Is Coupled With Contrasting Expression Patterns of Phosphate and Nitrate Transporters in Foxtail Millet [Setaria italica (L.) Beauv.] Under Phosphate Limitation. Frontiers in Plant Science, 2018, 9, 1367.	3.6	14
26	Magnesium Limitation Leads to Transcriptional Down-Tuning of Auxin Synthesis, Transport, and Signaling in the Tomato Root. Frontiers in Plant Science, 2021, 12, 802399.	3.6	12
27	Development and challenges of green food in China. Frontiers of Agricultural Science and Engineering, 2020, 7, 56.	1.4	10
28	<i>Cis-</i> regulation of the amino acid transporter genes <i>ZmAAP2</i> and <i>ZmLHT1</i> by ZmPHR1 transcription factors in maize ear under phosphate limitation. Journal of Experimental Botany, 2021, 72, 3846-3863.	4.8	9
29	Green Labelled Rice Shows a Higher Nutritional and Physiochemical Quality Than Conventional Rice in China. Foods, 2021, 10, 915.	4.3	7
30	Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea. Agriculture (Switzerland), 2021, 11, 120.	3.1	6
31	Hydrogeochemical Characteristics and Quality Assessment of Mine Water in Coalfield Area, Guizhou Province, Southwest China. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1087-1094.	2.7	6
32	Foxtail millet [Setaria italica (L.) Beauv.] over-accumulates ammonium under low nitrogen supply. Plant Physiology and Biochemistry, 2022, 185, 35-44.	5.8	6
33	Aberrant Meiotic Modulation Partially Contributes to the Lower Germination Rate of Pollen Grains in Maize (Zea maysL.) Under Low Nitrogen Supply. Plant and Cell Physiology, 2016, 58, pcw195.	3.1	4
34	CsIVP Modulates Low Nitrogen and High-Temperature Resistance in Cucumber. Plant and Cell Physiology, 2022, 63, 605-617.	3.1	3