Fengchun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808439/publications.pdf

Version: 2024-02-01

48 papers

1,378 citations

394421 19 h-index 36 g-index

48 all docs

48 docs citations

48 times ranked

2011 citing authors

#	Article	lF	CITATIONS
1	Integrated textile sensor patch for real-time and multiplex sweat analysis. Science Advances, 2019, 5, eaax0649.	10.3	345
2	An electrochemical biosensor for ascorbic acid based on carbon-supported PdNinanoparticles. Biosensors and Bioelectronics, 2013, 44, 183-190.	10.1	102
3	Single-Walled Carbon Nanotube Induced Optimized Electron Polarization of Rhodium Nanocrystals To Develop an Interface Catalyst for Highly Efficient Electrocatalysis. ACS Catalysis, 2018, 8, 8092-8099.	11.2	82
4	Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid. Biosensors and Bioelectronics, 2014, 55, 446-451.	10.1	80
5	Facile synthesis of Pd-based bimetallic nanocrystals and their application as catalysts for methanol oxidation reaction. Nanoscale, 2013, 5, 6124.	5 . 6	60
6	A highly sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid based on ultra-small Ni nanoparticles. Journal of Electroanalytical Chemistry, 2016, 775, 205-211.	3.8	54
7	Simultaneous determination of ascorbic acid, uric acid, tryptophan and adenine using carbon-supported NiCoO2 nanoparticles. Sensors and Actuators B: Chemical, 2015, 210, 232-240.	7.8	48
8	Single-Walled Carbon Nanotubes Wrapped CoFe ₂ O ₄ Nanorods with Enriched Oxygen Vacancies for Efficient Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 1026-1032.	5.1	47
9	A highly sensitive ascorbic acid sensor based on carbon-supported CoPd nanoparticles. Sensors and Actuators B: Chemical, 2014, 205, 20-25.	7.8	38
10	A high performance sensor based on bimetallic NiCu nanoparticles for the simultaneous determination of five species of biomolecules. Sensors and Actuators B: Chemical, 2017, 241, 949-956.	7.8	35
11	Exposure of active edge structure for electrochemical H2 evolution from VS2/MWCNTs hybrid catalysts. International Journal of Hydrogen Energy, 2018, 43, 22949-22954.	7.1	34
12	Lignocellulosic biomass for ethanol production and preparation of activated carbon applied for supercapacitor. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 166-172.	5 . 3	33
13	Characterizations and thermal stability of soluble polyimide derived from novel unsymmetrical diamine monomers. Polymer Degradation and Stability, 2010, 95, 1950-1958.	5.8	32
14	Modulation in Ruthenium–Cobalt Electronic Structure for Highly Efficient Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 1869-1874.	5.1	25
15	Porous Microspherical N and Pâ€coâ€doped NiFe ₂ O ₄ /Singleâ€Walled Carbon Nanotubes for Efficient Electrochemical Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 5174-5181.	3.7	24
16	Large scale fabrication of disposable carbon cloth electrochemical sensors for simultaneous determination of heavy metal ion. Journal of Electroanalytical Chemistry, 2019, 840, 328-337.	3.8	23
17	Electronic Asymmetric Distribution of RhCu Bimetallic Nanocrystals for Enhancing Trifunctional Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10299-10306.	8.0	23
18	Novel Strategy for the Investigation on Chirality Selection of Single-Walled Carbon Nanotubes with DNA by Electrochemical Characterization. Analytical Chemistry, 2018, 90, 12810-12814.	6.5	22

#	Article	IF	CITATIONS
19	Carboxylated carbon nanotubes with high electrocatalytic activity for oxygen evolution in acidic conditions. InformaÄnÃ-Materi \tilde{A}_i ly, 2022, 4, .	17.3	21
20	A versatile sensor for determination of seven species based on NiFe nanoparticles. Journal of Electroanalytical Chemistry, 2017, 797, 61-68.	3.8	18
21	Uniform growth of Fe3O4 nanocubes on the single-walled carbon nanotubes as an electrosensor of organic dyes and the study on its catalytic mechanism. Journal of Electroanalytical Chemistry, 2019, 833, 70-78.	3.8	17
22	Noncovalent Interactions of Derivatized Pyrenes with Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 11010-11015.	3.1	16
23	Determination of glutathione based on NiPd nanoparticles mediated with acetaminophen. Analytical Methods, 2016, 8, 3000-3005.	2.7	15
24	Morphologyâ€Controlled Synthesis of Molybdenum Disulfide Wrapped Singleâ€Walled Carbon Nanotubes for the Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 1128-1133.	3.7	15
25	Modification of electron structure on the semiconducting single-walled carbon nanotubes for effectively electrosensing guanine and adenine. Analytica Chimica Acta, 2019, 1079, 86-93.	5.4	14
26	Nonâ€Parallel Photoâ€Assisted Electrocatalysis Mechanism of SnS ₂ /NiO Heterojunction for Efficient Electrocatalytic Oxygen Evolution Reaction. ChemElectroChem, 2021, 8, 2087-2093.	3.4	13
27	Orientated carbon nanotubes boosting faster charge transfer for bifunctional HER and OER. International Journal of Hydrogen Energy, 2021, 46, 1904-1912.	7.1	12
28	Disposable carbon electrodes modified by a bismuth selenide/carboxylic multiwalled carbon nanotubes composite for the effective electrocatalytic analysis of nitrite. Sensors and Actuators B: Chemical, 2021, 332, 129454.	7.8	12
29	Facile and Effective Post-Production Separation of Single-Walled Carbon Nanotubes with Paired Aromatic Molecules: A Molecular Tweezers Approach. Journal of Physical Chemistry C, 2012, 116, 6800-6804.	3.1	11
30	Effective separation of single-walled carbon nanotubes and their very different electrochemical behaviours. Chemical Communications, 2016, 52, 9287-9290.	4.1	11
31	Mesoporous carbon black as a metal-free electrocatalyst for highly effective determination of chromium(VI). Journal of Electroanalytical Chemistry, 2017, 803, 58-64.	3.8	11
32	Facile exfoliation of molybdenum disulfide nanosheets as highly efficient electrocatalyst for detection of m-nitrophenol. Journal of Electroanalytical Chemistry, 2017, 801, 300-305.	3.8	11
33	Synthesis and characterization of degradable polyimides from p-phenylenedioxybis(5-amino-2-pyridine). Polymer Degradation and Stability, 2013, 98, 839-843.	5.8	8
34	Highly sensitive detection of Cr(<scp>vi</scp>) in groundwater by bimetallic NiFe nanoparticles. Analytical Methods, 2017, 9, 1031-1037.	2.7	8
35	Portable electrochemical carbon cloth analysis device for differential pulse anodic stripping voltammetry determination of Pb2+. Mikrochimica Acta, 2020, 187, 613.	5.0	8
36	The fabrication of a flexible electrode with trace Rh based on polypyrrole for the hydrogen evolution reaction. Chemical Communications, 2021, 57, 7370-7373.	4.1	7

#	Article	IF	CITATIONS
37	Acid-etched Fe/Fe ₂ O ₃ nanoparticles encapsulated into carbon cloth as a novel voltammetric sensor for the simultaneous detection of Cd ²⁺ and Pb ² . Analyst, The, 2021, 146, 691-697.	3.5	6
38	Coâ^'Moâ^'S Nanoflowers Wrapped Oxidized Multiâ€Walled Carbon Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ChemCatChem, 2021, 13, 3270-3274.	3.7	6
39	Carboxyl functionalized double-walled carbon nanotubes for oxygen evolution reaction. Electrochimica Acta, 2022, 419, 140395.	5.2	6
40	The electropositive environment of Rh in Rh1Sn2/SWNTs for boosting trifunctional electrocatalysis. International Journal of Hydrogen Energy, 2020, 45, 32050-32058.	7.1	5
41	Cu2O-coated polystyrene microsphere materials with enhanced photo- and photoelectro-catalytic activity. Journal of Solid State Electrochemistry, 2013, 17, 1429-1434.	2.5	4
42	A simple strategy for carboxylated MWNTs as a metal-free electrosensor for anchoring the RhB Cî€N group. Analytical Methods, 2019, 11, 2868-2874.	2.7	4
43	Highly Efficient Utilization of Precious Metals for Hydrogen Evolution Reaction with Photoâ€Assisted Electroâ€Deposited Urchinâ€Like Te Nanostructure as a Template. ChemCatChem, 2019, 11, 2283-2287.	3.7	4
44	Ag Nanostructures on Poly(3-hexylthiophene) and Semiconducting Single-Walled Carbon Nanotube Substrates for SERS Detection of Rhodamine B and Electrochemical Detection of Hydrogen Peroxide. ACS Applied Nano Materials, 2019, 2, 7728-7736.	5.0	3
45	A poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrid film for electrocatalytic determination of tertiary butylhydroquinone. Analyst, The, 2021, 146, 6846-6851.	3.5	3
46	Tailoring the Electrocatalytic Properties of sp ² â€Hybridized Carbon Nanomaterials with Molecule Doping. ChemCatChem, 2022, 14, .	3.7	2
47	An effective strategy for developing the CoMoS nanosheets wrapped by oxidized multi-walled carbon nanotubes as an electrosensor of oryzalin. Journal of Electroanalytical Chemistry, 2020, 878, 114710.	3.8	0
48	Front Cover Image. InformaÄnÃ-Materiály, 2022, 4, .	17.3	0