
Cullen Buchanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What's Old Is New Again. Annals of Thoracic Surgery, 2022, 114, 167.	1.3	Ο
2	Invasive Right Ventricular Pressure-Volume Analysis: Basic Principles, Clinical Applications, and Practical Recommendations. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121009101.	3.9	39
3	Arterial stiffness, hemodynamics, and microvascular complications in conditions characterized by low arterial pulsatility. , 2022, , 771-779.		0
4	Impact of Exercise on Cerebrovascular Physiology and Risk of Stroke. Stroke, 2022, 53, 2404-2410.	2.0	5
5	High-intensity exercise and passive hot water immersion cause similar postintervention changes in peripheral and cerebral shear. Journal of Applied Physiology, 2022, 133, 390-402.	2.5	1
6	Age-associated reductions in cardiovagal baroreflex sensitivity are exaggerated in middle-aged and older men with low testosterone. Journal of Applied Physiology, 2022, 133, 403-415.	2.5	5
7	Whole body passive heating versus dynamic lower body exercise: a comparison of peripheral hemodynamic profiles. Journal of Applied Physiology, 2021, 130, 160-171.	2.5	13
8	Impairments in Blood Pressure Regulation and Cardiac Baroreceptor Sensitivity Among Patients With Heart Failure Supported With Continuous-Flow Left Ventricular Assist Devices. Circulation: Heart Failure, 2021, 14, e007448.	3.9	14
9	Right ventricular function and cardiopulmonary performance among patients with heart failure supported by durable mechanical circulatory support devices. Journal of Heart and Lung Transplantation, 2021, 40, 128-137.	0.6	34
10	Reducing intracranial pressure by reducing central venous pressure: assessment of potential countermeasures to spaceflight-associated neuro-ocular syndrome. Journal of Applied Physiology, 2021, 130, 283-289.	2.5	7
11	The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Annals of Thoracic Surgery, 2021, 111, 778-792.	1.3	406
12	The Future of Mechanical Circulatory Support. Circulation: Heart Failure, 2021, 14, e008861.	3.9	4
13	New insights into resting and exertional right ventricular performance in the healthy heart through realâ€ŧime pressureâ€volume analysis. Journal of Physiology, 2020, 598, 2575-2587.	2.9	33
14	Cardiac Emergencies in Patients with Left Ventricular Assist Devices. Heart Failure Clinics, 2020, 16, 295-303.	2.1	0
15	Bionic women and men ―Part 2: Arterial stiffness in heart failure patients implanted with left ventricular assist devices. Experimental Physiology, 2020, 105, 755-758.	2.0	3
16	Bionic women and men ―Part 1: Cardiovascular lessons from heart failure patients implanted with left ventricular assist devices. Experimental Physiology, 2020, 105, 749-754.	2.0	5
17	Bionic women and men ―Part 4: Cardiovascular, cerebrovascular and exercise responses among patients supported with left ventricular assist devices. Experimental Physiology, 2020, 105, 763-766.	2.0	7
18	Bionic women and men ―Part 3: Right ventricular dysfunction in patients implanted with left ventricular assist devices. Experimental Physiology, 2020, 105, 759-762.	2.0	6

Cullen Buchanan

#	Article	IF	CITATIONS
19	Exercise Capacity in Mechanically Supported Advanced Heart Failure Patients: It Is All About the Beat. ASAIO Journal, 2020, 66, 339-342.	1.6	6
20	Cardiovagal Baroreflex Sensitivity is Reduced in Middleâ€Age and Older Men with Low Testosterone. FASEB Journal, 2020, 34, 1-1.	0.5	0
21	Safety, hemodynamic effects, and detection of acute xenon inhalation: rationale for banning xenon from sport. Journal of Applied Physiology, 2019, 127, 1511-1518.	2.5	7
22	Effect of acute and chronic xenon inhalation on erythropoietin, hematological parameters, and athletic performance. Journal of Applied Physiology, 2019, 127, 1503-1510.	2.5	9
23	Delayed febrile response with bloodstream infections in patients with continuous-flow left ventricular assist devices. Journal of Investigative Medicine, 2019, 67, 653-658.	1.6	3
24	CrossTalk opposing view: Blood flow pulsatility in left ventricular assist device patients is not essential to maintain normal brain physiology. Journal of Physiology, 2019, 597, 357-359.	2.9	10
25	Stroke Incidence and Impact of Continuous-Flow Left Ventricular Assist Devices on Cerebrovascular Physiology. Stroke, 2019, 50, 542-548.	2.0	39
26	Rebuttal from William K. Cornwell III, Takashi Tarumi, Justin Lawley and Amrut V. Ambardekar. Journal of Physiology, 2019, 597, 363-364.	2.9	1
27	The impact of 2Âyears of highâ€intensity exercise training on a model of integrated cardiovascular regulation. Journal of Physiology, 2019, 597, 419-429.	2.9	4
28	Lower body negative pressure to safely reduce intracranial pressure. Journal of Physiology, 2019, 597, 237-248.	2.9	57
29	Reversing the Cardiac Effects of Sedentary Aging in Middle Age—A Randomized Controlled Trial. Circulation, 2018, 137, 1549-1560.	1.6	135
30	Fluid structure interaction model analysis of cerebrospinal fluid circulation in patients with continuous-flow left ventricular assist devices. International Journal of Artificial Organs, 2018, 41, 129-132.	1.4	4
31	Effect of gravity and microgravity on intracranial pressure. Journal of Physiology, 2017, 595, 2115-2127.	2.9	205
32	Dynamic Changes in Aortic Vascular Stiffness in Patients Bridged to TransplantÂWith Continuous-Flow LeftÂVentricular Assist Devices. JACC: Heart Failure, 2017, 5, 449-459.	4.1	31
33	Body Mass Index and Cardiorespiratory Fitness in Mid-Life andÂRisk of Heart FailureÂHospitalization inÂOlder Age. JACC: Heart Failure, 2017, 5, 367-374.	4.1	69
34	Right atrial emptying fraction non-invasively predicts mortality in pulmonary hypertension. International Journal of Cardiovascular Imaging, 2016, 32, 1121-1130.	1.5	18
35	Restoration of Pulsatile Flow Reduces Sympathetic Nerve Activity Among Individuals With Continuous-Flow Left Ventricular Assist Devices. Circulation, 2015, 132, 2316-2322.	1.6	70
36	Patients With Heart Failure With ReducedÂEjection Fraction Have Exaggerated Reductions in Cerebral BloodÂFlow During Upright Posture â^—. JACC: Heart Failure, 2015, 3, 176-179.	4.1	17

Cullen Buchanan

#	Article	IF	CITATIONS
37	Continuous-Flow Circulatory Support. Circulation: Heart Failure, 2015, 8, 850-852.	3.9	8
38	Effect of pulsatile and nonpulsatile flow on cerebral perfusion in patients with left ventricular assist devices. Journal of Heart and Lung Transplantation, 2014, 33, 1295-1303.	0.6	58
39	Factors Influencing the Rate of Flow Through Continuous-Flow Left Ventricular Assist Devices at Rest and With Exercise â^—. JACC: Heart Failure, 2014, 2, 331-334.	4.1	18
40	Right ventricular function across the spectrum of health and disease. Heart, 0, , heartjnl-2021-320526.	2.9	5