Zuofeng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808048/publications.pdf Version: 2024-02-01

ZUDEENC ZHAO

#	Article	IF	CITATIONS
1	Tailoring intermolecular interactions to develop a low-temperature electrolyte system consisting of 1-butyl-3-methylimidazolium iodide and organic solvents. RSC Advances, 2019, 9, 36796-36807.	3.6	12
2	A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition. Science, 2018, 359, 1127-1131.	12.6	81
3	A Dual Ionic Liquid-Based Low-Temperature Electrolyte System. Journal of Physical Chemistry B, 2018, 122, 12077-12086.	2.6	12
4	A New Version of the Lithium Ion Conducting Plastic Crystal Solid Electrolyte. Advanced Energy Materials, 2018, 8, 1801324.	19.5	22
5	Apparent Firstâ€Order Liquid–Liquid Transition with Preâ€transition Density Anomaly, in Waterâ€Rich Ideal Solutions. Angewandte Chemie - International Edition, 2016, 55, 2474-2477.	13.8	24
6	Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries. Journal of Power Sources, 2015, 295, 190-196.	7.8	22
7	Fluctuations, clusters, and phase transitions in liquids, solutions, and glasses: from metastable water to phase change memory materials. Faraday Discussions, 2013, 167, 625.	3.2	9
8	"ldeal glassformers―vs "ideal glasses― Studies of crystal-free routes to the glassy state by "potential tuning―molecular dynamics, and laboratory calorimetry. Journal of Chemical Physics, 2013, 138, 12A549.	3.0	11
9	Anhydrous Superprotonic Polymer by Superacid Protonation of Cross-linked (PNCl ₂) _{<i>n</i>} . Journal of Physical Chemistry C, 2013, 117, 1548-1553.	3.1	4
10	Specific Heat in a Typical Metallic Glass Former. Chinese Physics Letters, 2012, 29, 046402.	3.3	8
11	Protic Ionic Liquids Based on Decahydroisoquinoline: Lost Superfragility and Ionicity-Fragility Correlation. Journal of Physical Chemistry B, 2012, 116, 63-70.	2.6	37
12	Ionic Liquids: Past, present and future. Faraday Discussions, 2012, 154, 9-27.	3.2	624
13	High Conductivity, and "Dry―Proton Motion, in Guanidinium Salt Melts and Binary Solutions. Journal of Physical Chemistry B, 2011, 115, 13467-13472.	2.6	28
14	Mechanical relaxation in supercooled liquids of bulk metallic glasses. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2693-2703.	1.8	23
15	Glass transition and fragility in the simple molecular glassformer CS2 from CS2–S2Cl2 solution studies. Journal of Chemical Physics, 2010, 132, 154505.	3.0	1
16	Relaxation behavior on high frequency profile in strong/fragile metallic glass-forming systems. Journal of Non-Crystalline Solids, 2010, 356, 1198-1200.	3.1	14
17	Physical aging in Zr46.75Ti8.25Cu7.5Ni10Be27.5 typical bulk metallic glass manifested as enthalpy relaxation. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 356-364.	0.2	3
18	Measurements of slowl²-relaxations in metallic glasses and supercooled liquids. Physical Review B, 2007, 75, .	3.2	132

ZUOFENG ZHAO

#	Article	IF	CITATIONS
19	Formation and properties of Pr-based bulk metallic glasses. Journal of Materials Research, 2006, 21, 369-374.	2.6	23
20	Observation of secondary relaxation in a fragile Pd40Ni10Cu30P20 bulk metallic glass. Applied Physics Letters, 2006, 89, 071920.	3.3	34
21	Formation and properties of new heavy rare-earth-based bulk metallic glasses. Science and Technology of Advanced Materials, 2005, 6, 823-827.	6.1	43
22	A highly glass-forming alloy with low glass transition temperature. Applied Physics Letters, 2003, 82, 4699-4701.	3.3	118
23	Superconductivity of bulk Zr46.75Ti8.25Cu7.5Ni10Be27.5metallic glass. Journal of Physics Condensed Matter, 2003, 15, 4809-4815.	1.8	8