Gabriella Buffa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2807936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	3.6	330
2	Impact of invasive alien plants on native plant communities and Natura 2000 habitats: State of the art, gap analysis and perspectives in Italy. Journal of Environmental Management, 2020, 274, 111140.	7.8	78
3	The response of plant community diversity to alien invasion: evidence from a sand dune time series. Biodiversity and Conservation, 2015, 24, 371-392.	2.6	53
4	Habitat conservation in Italy: the state of the art in the light of the first European Red List of Terrestrial and Freshwater Habitats. Rendiconti Lincei, 2018, 29, 251-265.	2.2	50
5	Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems, 2019, 153, 853-869.	1.6	48
6	A first checklist of the alien-dominated vegetation in Italy. Plant Sociology, 2020, 57, 29-54.	2.4	37
7	Morphological changes induced by heavy metals in dandelion (Taraxacum officinale Web.) growing on mine soils. Journal of Soils and Sediments, 2014, 14, 731-743.	3.0	35
8	New insights into plants coâ€existence in speciesâ€rich communities: The pollination interaction perspective. Journal of Vegetation Science, 2018, 29, 6-14.	2.2	35
9	The use of plant community attributes to detect habitat quality in coastal environments. AoB PLANTS, 2016, 8, plw040.	2.3	33
10	Biogeographic variability of coastal perennial grasslands at the European scale. Applied Vegetation Science, 2018, 21, 312-321.	1.9	32
11	Plant community attributes affect dry grassland orchid establishment. Plant Ecology, 2016, 217, 1533-1543.	1.6	31
12	Trade-offs between sampling effort and data quality in habitat monitoring. Biodiversity and Conservation, 2019, 28, 55-73.	2.6	27
13	Shedding light on typical species: implications for habitat monitoring. Plant Sociology, 2021, 58, 157-166.	2.4	26
14	Pollination networks along the sea-inland gradient reveal landscape patterns of keystone plant species. Scientific Reports, 2018, 8, 15221.	3.3	25
15	Habitats on the grid: The spatial dimension does matter for red-listing. Journal for Nature Conservation, 2016, 32, 1-9.	1.8	23
16	Local versus landscape-scale effects of anthropogenic land-use on forest species richness. Acta Oecologica, 2018, 86, 49-56.	1.1	23
17	Enzymatic scarification of <i>Anacamptis morio</i> (Orchidaceae) seed facilitates lignin degradation, water uptake and germination. Plant Biology, 2019, 21, 409-414.	3.8	23
18	Does flowering synchrony contribute to the sustainment of dry grassland biodiversity?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 222, 96-103.	1.2	22

GABRIELLA BUFFA

#	Article	IF	CITATIONS
19	Distribution map of <i>Ambrosia artemisiifolia</i> L. (Asteraceae) in Italy. Plant Biosystems, 2017, 151, 381-386.	1.6	21
20	Phytocoenotic originality of the N-Adriatic coastal sand dunes (Northern Italy) in the European context: TheStipa veneta-rich communities. Plant Biosystems, 2008, 142, 533-539.	1.6	18
21	Correlations among biodiversity, biomass and other plant community parameters using the phytosociological approach: A case study from the south-eastern Alps. Plant Biosystems, 2011, 145, 131-140.	1.6	18
22	Are the ancient forests of the Eastern Po Plain large enough for a long term conservation of herbaceous nemoral species?. Plant Biosystems, 2012, 146, 970-984.	1.6	18
23	The resilience of pollination interactions: importance of temporal phases. Journal of Plant Ecology, 2019, 12, 157-162.	2.3	17
24	Are foodâ€deceptive orchid species really functionally specialized for pollinators?. Ecological Research, 2017, 32, 951-959.	1.5	16
25	The fate of coastal habitats in the Venice Lagoon from the sea level rise perspective. Applied Geography, 2018, 98, 34-42.	3.7	16
26	The germination niche of coastal dune species as related to their occurrence along a sea–inland gradient. Journal of Vegetation Science, 2020, 31, 1112-1121.	2.2	16
27	Conservation status of Italian coastal dune habitats in the light of the 4th Monitoring Report (92/43/EEC Habitats Directive). Plant Sociology, 2020, 57, 55-64.	2.4	16
28	Germination responses of Mediterranean populations of Cakile maritima to light, salinity and temperature. Folia Geobotanica, 2018, 53, 417-428.	0.9	12
29	Functional seed traits and germination patterns predict species coexistence in Northeast Mediterranean foredune communities. Annals of Botany, 2021, 127, 361-370.	2.9	11
30	Patterns of pollination interactions at the community level are related to the type and quantity of floral resources. Functional Ecology, 2021, 35, 2461-2471.	3.6	11
31	Mediterranean developed coasts: what future for the foredune restoration?. Journal of Coastal Conservation, 2021, 25, 1.	1.6	11
32	Using fine-scale field data modelling for planning the management of invasions of Oenothera stucchii in coastal dune systems. Ecological Indicators, 2021, 125, 107564.	6.3	10
33	The co-occurrence of different grassland communities increases the stability of pollination networks. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 255, 11-17.	1.2	9
34	Effects of Disturbance on Sandy Coastal Ecosystems of N-Adriatic Coasts (Italy). , 0, , .		9
35	Increasing the germination percentage of a declining native orchid (Himantoglossum adriaticum) by pollen transfer and outbreeding between populations. Plant Biology, 2019, 21, 935-941.	3.8	6
36	Carex ferrugineagrasslands in the south-eastern Alps. Plant Biosystems, 2001, 135, 195-206.	1.6	5

GABRIELLA BUFFA

#	Article	IF	CITATIONS
37	Pollination and dispersal trait spectra recover faster than the growth form spectrum during spontaneous succession in sandy oldâ€fields. Applied Vegetation Science, 2019, 22, 435-443.	1.9	5
38	L'analisi corologica nell'interpretazione sintassonomica: L'esempio delle praterie a <i>Festuca paniculata</i> (L.) Sch. et Th Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 236-247.	0.0	3
39	Intraspecific variability of leaf traits and functional strategy of Himantoglossum adriaticum H. Baumann. Plant Sociology, 2020, 57, 105-112.	2.4	3
40	Vegetazione. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 261-281.	0.0	2
41	Human influence on the vascular flora of the Veggiano territory (Padova - Italy). Giornale Botanico Italiano (Florence, Italy: 1962), 1993, 127, 1079-1090.	0.0	1
42	Effects of management regimes on structure, composition and diversity of seasonally inundated herbaceous communities in the Mkomazi National Park, Tanzania. African Journal of Ecology, 2018, 56, 949-956.	0.9	1
43	Vegetazione. Giornale Botanico Italiano (Florence, Italy: 1962), 1992, 126, 438-454.	0.0	0
44	Conservazione Della Natura. Giornale Botanico Italiano (Florence, Italy: 1962), 1993, 127, 573-588.	0.0	0
45	Vegetazione. Giornale Botanico Italiano (Florence, Italy: 1962), 1993, 127, 705-725.	0.0	0
46	Confronto Corologico Tra Le Associazioni aMolinia Caerulea(L.) Moench Della Pianura Padana ed i Sintipi Centro Europei: Primi Risultati. Giornale Botanico Italiano (Florence, Italy: 1962), 1994, 128, 464-464.	0.0	0
47	Disturbance affects the contribution of coastal dune vegetation to carbon storage and carbon sequestration rate. Plant Sociology, 2022, 59, 37-48.	2.4	О