Philip H Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2806947/publications.pdf

Version: 2024-02-01

279798 2,835 62 23 h-index citations papers

g-index 71 71 71 3158 docs citations times ranked citing authors all docs

265206

42

#	Article	IF	CITATIONS
1	Influence of slow light effect on trapping force in optical tweezers. Optics Letters, 2022, 47, 710.	3.3	1
2	Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate. Cell Stem Cell, 2021, 28, 273-284.e6.	11.1	104
3	Optical tweezers: theory and practice. European Physical Journal Plus, 2020, 135, 1.	2.6	57
4	Strongly Focused Circularly Polarized Optical Vortices Regulated by a Fractal Conical Lens. Applied Sciences (Switzerland), 2020, 10, 28.	2.5	1
5	Editorial for the Special Issue on Optical Trapping and Manipulation: From Fundamentals to Applications. Micromachines, 2020, 11, 417.	2.9	O
6	Non-Occlusive Retinal Vascular Inflammation and Role of Red Blood Cell Deformability in Birdshot Chorioretinopathy. Ocular Immunology and Inflammation, 2019, 27, 978-986.	1.8	2
7	Optical trapping and optical force positioning of two-dimensional materials. Nanoscale, 2018, 10, 1245-1255.	5.6	44
8	A microscopic Kapitza pendulum. Scientific Reports, 2018, 8, 13107.	3.3	16
9	Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218, 131-150.	2.3	150
10	Acoustic force measurements on polymer-coated microbubbles in a microfluidic device. Journal of the Acoustical Society of America, 2017, 141, 3364-3378.	1.1	9
11	Optical Binding of Nanowires. Nano Letters, 2017, 17, 3485-3492.	9.1	39
12	Stretching Red Blood Cells with Optical Tweezers. , 2017, , .		1
13	Microbubble trapping in inverted optical tweezers. , 2017, , .		2
14	Optically bound colloidal lattices in evanescent optical fields. Optics Letters, 2016, 41, 4935.	3.3	6
15	Optical Kapitza pendulum. Proceedings of SPIE, 2016, , .	0.8	O
16	Analysis of the Uncertainty in Microbubble Characterization. Ultrasound in Medicine and Biology, 2016, 42, 1412-1418.	1.5	5
17	Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires. Nano Letters, 2016, 16, 4181-4188.	9.1	39
18	Red blood cells in retinal vascular disorders. Blood Cells, Molecules, and Diseases, 2016, 56, 53-61.	1.4	19

#	Article	IF	CITATIONS
19	Optical manipulation using highly focused alternate radially and azimuthally polarized beams modulated by a devil's lens. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 2501.	1.5	7
20	Dynamical stabilisation in optical tweezers. , 2015, , .		0
21	Correlated fluctuations of optically trapped particles. Proceedings of SPIE, 2015, , .	0.8	O
22	Optical cooling and trapping: introduction. Journal of the Optical Society of America B: Optical Physics, 2015, 32, OCT1.	2.1	0
23	Devil's lens optical tweezers. Optics Express, 2015, 23, 8190.	3.4	26
24	Focus issue introduction: optical cooling and trapping. Optics Express, 2015, 23, 9917.	3.4	1
25	Step-by-step guide to the realization of advanced optical tweezers. Journal of the Optical Society of America B: Optical Physics, 2015, 32, B84.	2.1	64
26	Low frequency dynamical stabilisation in optical tweezers. Proceedings of SPIE, 2015, , .	0.8	0
27	A study of red blood cell deformability in diabetic retinopathy using optical tweezers. Proceedings of SPIE, $2015, $, .	0.8	9
28	Evanescent wave optical binding forces on spherical microparticles. Optics Letters, 2015, 40, 4042.	3.3	18
29	Optical Binding and Synchronisation in Arrays of Non-Spherical Particles. , 2015, , .		0
30	Experimental characterisation of holographic optical traps for microbubbles. , 2014, , .		3
31	Multiscale manipulation of microbubbles employing simultaneous optical and acoustical trapping. Proceedings of SPIE, 2014, , .	0.8	3
32	Laser vibrometry characterisation of a microfluidic lab-on-a-chip device: a preliminary investigation. Journal of Physics: Conference Series, 2014, 498, 012002.	0.4	1
33	Optical trapping and manipulation of nanostructures. Nature Nanotechnology, 2013, 8, 807-819.	31.5	829
34	Optical binding of nanowires in counterpropagating beams. Proceedings of SPIE, 2013, , .	0.8	1
35	Trapping volume control in optical tweezers using cylindrical vector beams. Optics Letters, 2013, 38, 28.	3.3	72
36	Theoretical characterisation of the radial and translational motion of coated microbubbles under acoustic excitation. Journal of Physics: Conference Series, 2013, 457, 012001.	0.4	2

#	Article	IF	Citations
37	Investigating the sensitivity of microbubble acoustic response for biosensing applications. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
38	Optical trapping of nanotubes with cylindrical vector beams. Optics Letters, 2012, 37, 3381.	3.3	91
39	Trapping and deformation of microbubbles in a dual-beam fibre-optic trap. Journal of Optics (United) Tj ETQq1	1 0.784314 2.2	rgBT Overlo
40	Radially Polarized Optical Tweezers. , 2011, , .		0
41	Fano-Doppler Laser Cooling of Hybrid Nanostructures. ACS Nano, 2011, 5, 7354-7361.	14.6	27
42	Optical trapping of porous silicon nanoparticles. Nanotechnology, 2011, 22, 505704.	2.6	23
43	Micro and anoparticle Optical Trapping Using Cylindrical Vector Beams., 2011,,.		0
44	Plasmon-enhanced optical trapping of metal nanoparticles: force calculations and light-driven rotations of nanoaggregates. , 2010, , .		2
45	Brownian Motion of Graphene. ACS Nano, 2010, 4, 7515-7523.	14.6	194
46	Photonic Force Microscopy: From Femtonewton Force Sensing to Ultra-Sensitive Spectroscopy. Nanoscience and Technology, 2010, , 23-56.	1.5	6
47	Focusing of high order cylindrical vector beams. Journal of Optics, 2009, 11, 065204.	1.5	82
48	Sagnac interferometer method for synthesis of fractional polarization vortices. Optics Letters, 2009, 34, 2560.	3.3	57
49	Rotation Detection in Light-Driven Nanorotors. ACS Nano, 2009, 3, 3077-3084.	14.6	112
50	Femtonewton Force Sensing with Optically Trapped Nanotubes. Nano Letters, 2008, 8, 3211-3216.	9.1	118
51	Directed Motion for Delta-Kicked Atoms with Broken Symmetries: Comparison between Theory and Experiment. Physical Review Letters, 2007, 98, 073002.	7.8	62
52	Parametrization of trapping forces on microbubbles in scanning optical tweezers. Journal of Optics, 2007, 9, S278-S283.	1.5	26
53	Trapping and manipulation of microscopic bubbles with a scanning optical tweezer. Applied Physics Letters, 2006, 89, 081113.	3.3	69
54	Chaotic quantum ratchets and filters with cold atoms in optical lattices: Analysis using Floquet states. Physical Review A, 2005, 72, .	2.5	21

#	Article	IF	CITATIONS
55	Atoms in Double-δ-Kicked Periodic Potentials: Chaos with Long-Range Correlations. Physical Review Letters, 2004, 93, 223002.	7.8	47
56	Rectifying Fluctuations in an Optical Lattice. Physical Review Letters, 2004, 93, 073904.	7.8	67
57	A moving-mirror frequency modulator for cold atom spectroscopy. Review of Scientific Instruments, 2002, 73, 2549-2551.	1.3	O
58	Ray optics., 0,, 19-41.		0
59	Optofluidics and lab-on-a-chip. , 0, , 409-421.		O
60	Plasmonics. , 0, , 470-483.		0
61	Nanostructures. , 0, , 484-497.		0
62	Towards the quantum regime at the mesoscale. , 0, , 524-536.		0