## Natalie Hempel de Ibarra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2806553/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Insect navigation: Some memories like it hot. Current Biology, 2022, 32, R81-R84.                                                                                                                                                                               | 3.9 | 1         |
| 2  | Flower sharing and pollinator health: a behavioural perspective. Philosophical Transactions of the<br>Royal Society B: Biological Sciences, 2022, 377, 20210157.                                                                                                | 4.0 | 5         |
| 3  | Remote Sensing of Floral Resources for Pollinators – New Horizons From Satellites to Drones.<br>Frontiers in Ecology and Evolution, 2022, 10, .                                                                                                                 | 2.2 | 8         |
| 4  | Small and Large Bumblebees Invest Differently when Learning about Flowers. Current Biology, 2021, 31, 1058-1064.e3.                                                                                                                                             | 3.9 | 10        |
| 5  | Onset of morning activity in bumblebee foragers under natural low light conditions. Ecology and Evolution, 2021, 11, 6536-6545.                                                                                                                                 | 1.9 | 7         |
| 6  | Bumblebees can detect floral humidity. Journal of Experimental Biology, 2021, 224, .                                                                                                                                                                            | 1.7 | 16        |
| 7  | Pollination: Influencing bee behaviour with caffeine. Current Biology, 2021, 31, R1090-R1092.                                                                                                                                                                   | 3.9 | 5         |
| 8  | Approach Direction Prior to Landing Explains Patterns of Colour Learning in Bees. Frontiers in Physiology, 2021, 12, 697886.                                                                                                                                    | 2.8 | 6         |
| 9  | Floral temperature patterns can function as floral guides. Arthropod-Plant Interactions, 2020, 14, 193-206.                                                                                                                                                     | 1.1 | 16        |
| 10 | Floral Humidity in Flowering Plants: A Preliminary Survey. Frontiers in Plant Science, 2020, 11, 249.                                                                                                                                                           | 3.6 | 19        |
| 11 | Inhibitory control and memory in the search process for a modified problem in grey squirrels,<br>Sciurus carolinensis. Animal Cognition, 2019, 22, 645-655.                                                                                                     | 1.8 | 7         |
| 12 | How are pollinators guided by colourful floral structures? A commentary on: â€~The role of pollinator preference in the maintenance of pollen colour variation'. Annals of Botany, 2019, 123, iv-vi.                                                            | 2.9 | 2         |
| 13 | A matter of taste: the adverse effect of pollen compounds on the pre-ingestive gustatory experience of<br>sugar solutions for honeybees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural,<br>and Behavioral Physiology, 2019, 205, 333-346. | 1.6 | 2         |
| 14 | A comparative analysis of colour preferences in temperate and tropical social bees. Die<br>Naturwissenschaften, 2018, 105, 8.                                                                                                                                   | 1.6 | 20        |
| 15 | Variations on a theme: bumblebee learning flights from the nest and from flowers. Journal of Experimental Biology, 2018, 221, .                                                                                                                                 | 1.7 | 24        |
| 16 | The effect of dietary neonicotinoid pesticides on non-flight thermogenesis in worker bumble bees<br>(Bombus terrestris). Journal of Insect Physiology, 2018, 104, 33-39.                                                                                        | 2.0 | 37        |
| 17 | The Dominant Role of Visual Motion Cues in Bumblebee Flight Control Revealed Through Virtual Reality. Frontiers in Physiology, 2018, 9, 1038.                                                                                                                   | 2.8 | 14        |
| 18 | The role of spatial texture in visual control of bumblebee learning flights. Journal of Comparative<br>Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 737-745.                                                             | 1.6 | 6         |

NATALIE HEMPEL DE IBARRA

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reporting of thermography parameters in biology: a systematic review of thermal imaging literature.<br>Royal Society Open Science, 2018, 5, 181281.                                                        | 2.4 | 37        |
| 20 | Male bumblebees perform learning flights on leaving a flower but not when leaving their nest.<br>Journal of Experimental Biology, 2017, 220, 930-937.                                                      | 1.7 | 22        |
| 21 | How to stay perfect: the role of memory and behavioural traits in an experienced problem and a similar problem. Animal Cognition, 2017, 20, 941-952.                                                       | 1.8 | 15        |
| 22 | Assessment of pollen rewards by foraging bees. Functional Ecology, 2017, 31, 76-87.                                                                                                                        | 3.6 | 93        |
| 23 | The diversity of floral temperature patterns, and their use by pollinators. ELife, 2017, 6, .                                                                                                              | 6.0 | 58        |
| 24 | Insect Navigation: How Do Wasps Get Home?. Current Biology, 2016, 26, R166-R168.                                                                                                                           | 3.9 | 7         |
| 25 | More than colour attraction: behavioural functions of flower patterns. Current Opinion in Insect Science, 2015, 12, 64-70.                                                                                 | 4.4 | 72        |
| 26 | Differences in color learning between pollen- and sucrose-rewarded bees. Communicative and Integrative Biology, 2015, 8, e1052921.                                                                         | 1.4 | 4         |
| 27 | Motion cues improve the performance of harnessed bees in a colour learning task. Journal of<br>Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201,<br>505-511. | 1.6 | 21        |
| 28 | †The thieving magpie'? No evidence for attraction to shiny objects. Animal Cognition, 2015, 18, 393-397.                                                                                                   | 1.8 | 10        |
| 29 | Bees associate colour cues with differences in pollen rewards. Journal of Experimental Biology, 2014, 217, 2783-8.                                                                                         | 1.7 | 34        |
| 30 | Mechanisms, functions and ecology of colour vision in the honeybee. Journal of Comparative<br>Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 411-433.                 | 1.6 | 139       |
| 31 | Head movements and the optic flow generated during the learning flights of bumblebees. Journal of Experimental Biology, 2014, 217, 2633-2642.                                                              | 1.7 | 45        |
| 32 | Characterisation of the RNA interference response against the long-wavelength receptor of the honeybee. Insect Biochemistry and Molecular Biology, 2013, 43, 959-969.                                      | 2.7 | 24        |
| 33 | Bumblebee calligraphy: the design and control of flight motifs in the learning and return flights of <i>Bombus terrestris</i> . Journal of Experimental Biology, 2013, 216, 1093-1104.                     | 1.7 | 64        |
| 34 | Pollen Elicits Proboscis Extension but Does not Reinforce PER Learning in Honeybees. Insects, 2013, 4, 542-557.                                                                                            | 2.2 | 11        |
| 35 | Coordinating compass-based and nest-based flight directions during bumblebee learning and return flights. Journal of Experimental Biology, 2013, 216, 1105-1113.                                           | 1.7 | 29        |
| 36 | Artificial light pollution: are shifting spectral signatures changing the balance of species interactions?. Global Change Biology, 2013, 19, 1417-1423.                                                    | 9.5 | 181       |

| #  | Article                                                                                                                                                                                      | IF               | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 37 | Olfactory Detectability of L-Amino Acids in the European Honeybee (Apis mellifera). Chemical Senses, 2012, 37, 631-638.                                                                      | 2.0              | 17           |
| 38 | Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology, 2012, 115, 365-371.                                                                 | 1.2              | 128          |
| 39 | Honey Bee Vision in Relation to Flower Patterns. , 2012, , 285-301.                                                                                                                          |                  | 4            |
| 40 | Blackawton bees: commentary on Blackawton, P. S. et al Biology Letters, 2011, 7, 166-167.                                                                                                    | 2.3              | 1            |
| 41 | Do wood ants learn sequences of visual stimuli?. Journal of Experimental Biology, 2011, 214, 2739-2748.                                                                                      | 1.7              | 10           |
| 42 | Preferred viewing directions of bumblebees (Bombus terrestrisL.) when learning and approaching their nest site. Journal of Experimental Biology, 2009, 212, 3193-3204.                       | 1.7              | 55           |
| 43 | Preferred viewing directions of bumblebees ( <i>Bombus terrestris</i> L.) when learning and approaching their nest site. Journal of Experimental Biology, 2009, 212, 3769-3769.              | 1.7              | 2            |
| 44 | Fast learning but coarse discrimination of colours in restrained honeybees. Journal of Experimental<br>Biology, 2009, 212, 1344-1350.                                                        | 1.7              | 60           |
| 45 | What can be learnt from analysing insect orientation flights using probabilistic SLAM?. Biological Cybernetics, 2009, 101, 169-182.                                                          | 1.3              | 16           |
| 46 | Flower patterns are adapted for detection by bees. Journal of Comparative Physiology A:<br>Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 319-323.                    | 1.6              | 43           |
| 47 | Learning of colored targets with vertical and horizontal components by bumblebees ( <i>Bombus) Tj ETQq1 1 0.7</i>                                                                            | 84314 rgE<br>0.5 | 3T /Overlock |
| 48 | Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience. Developmental Neurobiology, 2008, 68, 1007-1017. | 3.0              | 48           |
| 49 | Detection of patches of coloured discs by bees. Journal of Experimental Biology, 2008, 211, 2101-2104.                                                                                       | 1.7              | 61           |
| 50 | How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae.<br>Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2239-2248.                   | 2.6              | 44           |
| 51 | Navigational Memories in Ants and Bees: Memory Retrieval When Selecting and Following Routes.<br>Advances in the Study of Behavior, 2006, 36, 123-172.                                       | 1.6              | 87           |
| 52 | Different parameters support generalization and discrimination learning in Drosophila at the flight simulator. Learning and Memory, 2006, 13, 629-637.                                       | 1.3              | 22           |
| 53 | Priming of visual route memories. Nature, 2005, 438, 302-302.                                                                                                                                | 27.8             | 90           |
| 54 | Symmetry is in the eye of the ?beeholder?: innate preference for bilateral symmetry in flower-na�ve<br>bumblebees. Die Naturwissenschaften, 2004, 91, 374-7.                                 | 1.6              | 101          |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Animal Behaviour, 2003, 66, 903-910.                                                      | 1.9 | 46        |
| 56 | Colour-dependent target detection by bees. Journal of Comparative Physiology A: Neuroethology,<br>Sensory, Neural, and Behavioral Physiology, 2003, 189, 915-918.                                            | 1.6 | 29        |
| 57 | Discrimination of coloured patterns by honeybees through chromatic and achromatic cues. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 503-512.  | 1.6 | 69        |
| 58 | Detection of coloured patterns by honeybees through chromatic and achromatic cues. Journal of<br>Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187,<br>215-224. | 1.6 | 93        |
| 59 | Colourful objects through animal eyes. Color Research and Application, 2001, 26, S214-S217.                                                                                                                  | 1.6 | 61        |
| 60 | Detection of bright and dim colours by honeybees. Journal of Experimental Biology, 2000, 203, 3289-3298.                                                                                                     | 1.7 | 68        |
| 61 | Detection of bright and dim colours by honeybees. Journal of Experimental Biology, 2000, 203, 3289-98.                                                                                                       | 1.7 | 49        |
| 62 | Do "White" and "Green" Look the Same to a Bee?. Die Naturwissenschaften, 1999, 86, 592-594.                                                                                                                  | 1.6 | 20        |