
Yasunari Maekawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2806489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphological characterization of grafted polymer electrolyte membranes at a surface layer for fuel cell application. Journal of Applied Polymer Science, 2022, 139, 51901.	2.6	5
2	Alkaline fuel cells consisting of imidazolium-based graft-type anion exchange membranes: Optimization of fuel cell conditions to achieve high performance and durability. Journal of Membrane Science, 2021, 620, 118844.	8.2	21
3	Mechanistic study on radiationâ€induced grafting into fluorinated polymer solid films using a swellingâ€induced detachment of grafted polymers. Journal of Polymer Science, 2021, 59, 108-116.	3.8	6
4	Radiation-Induced Asymmetric Grafting of Different Monomers into Base Films to Prepare Novel Bipolar Membranes. Molecules, 2021, 26, 2028.	3.8	3
5	Synthesis and Characterization of 4â€Vinylimidazolium/Styreneâ€Cografted Anionâ€Conducting Electrolyte Membranes. Macromolecular Chemistry and Physics, 2021, 222, 2100028.	2.2	2
6	Coarse-grained molecular dynamics simulation to reproduce phase-separated structures in graft-type polymer electrolyte membranes. Polymer, 2021, 230, 124036.	3.8	1
7	Study on Irradiation Effects by Femtosecond-pulsed Extreme Ultraviolet in Resist Materials. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 95-98.	0.3	Ο
8	SAXS Investigation on Morphological Change in Lamellar Structures During Propagation Steps of Graftâ€īype Polymer Electrolyte Membranes for Fuel Cell Applications. Macromolecular Chemistry and Physics, 2020, 221, 1900325.	2.2	8
9	Quantum Beams Applying to Innovative Industrial Materials. Quantum Beam Science, 2020, 4, 27.	1.2	Ο
10	Formation of Fe Nanoparticles by Ion Implantation Technique for Catalytic Graphitization of a Phenolic Resin. Quantum Beam Science, 2020, 4, 11.	1.2	6
11	Development of Hydrogen-Permselective Porous Membranes Using Radiation-Induced Graft Polymerization. Quantum Beam Science, 2020, 4, 23.	1.2	1
12	Soft x-ray laser beamline for surface processing and damage studies. Applied Optics, 2020, 59, 3692.	1.8	2
13	Sensitivity enhancement of poly(methyl methacrylate) upon exposure to picosecond-pulsed extreme ultraviolet. Applied Physics Letters, 2019, 115, 073109.	3.3	5
14	Imidazolium-Based Anion Exchange Membranes for Alkaline Anion Fuel Cells: Interplay between Morphology and Anion Transport Behavior. Journal of the Electrochemical Society, 2019, 166, F472-F478.	2.9	9
15	Alkaline durable 2-methylimidazolium containing anion-conducting electrolyte membranes synthesized by radiation-induced grafting for direct hydrazine hydrate fuel cells. Journal of Membrane Science, 2019, 573, 403-410.	8.2	22
16	Basicityâ€dependent properties of anion conducting membranes consisting of iminium cations for alkaline fuel cells. Journal of Polymer Science Part A, 2019, 57, 503-510.	2.3	6
17	Application of graft-type poly(ether ether ketone)-based polymer electrolyte membranes to electrochemical devices – Fuel cells and electrolytic enrichment of tritium. International Journal of Hydrogen Energy, 2018, 43, 8927-8935.	7.1	11
18	Graft-type polymer electrolyte membranes based on poly(ether ether ketone)/nanosilica hybrid films for fuel cell applications. International Journal of Hydrogen Energy, 2016, 41, 18621-18630.	7.1	16

#	Article	IF	CITATIONS
19	Hierarchical Structure–Property Relationships in Graft-Type Fluorinated Polymer Electrolyte Membranes Using Small- and Ultrasmall-Angle X-ray Scattering Analysis. Macromolecules, 2014, 47, 2373-2383.	4.8	32
20	Poly(ethylene-co-tetrafluoroethylene) (ETFE)-based graft-type polymer electrolyte membranes with different ion exchange capacities: Relative humidity dependence for fuel cell applications. Journal of Membrane Science, 2013, 447, 19-25.	8.2	39
21	Nanoscale structures of radiation-grafted polymer electrolyte membranes investigated via a small-angle neutron scattering technique. Polymer Journal, 2013, 45, 797-801.	2.7	11
22	Graft-type polymer electrolyte membranes for fuel cells prepared through radiation-induced graft polymerization into alicyclic polybenzimidazoles. Polymer, 2013, 54, 4570-4577.	3.8	5
23	Counterâ€Anion Effect on the Properties of Anionâ€Conducting Polymer Electrolyte Membranes Prepared by Radiationâ€Induced Graft Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 1756-1762.	2.2	16
24	Crystal morphology-dependent graft polymerization in poly(ether ether ketone) films. Polymer, 2013, 54, 2895-2900.	3.8	9
25	Ion-Track Membranes of Poly(vinylidene fluoride): Etching Characteristics during Conductometric Analysis. Transactions of the Materials Research Society of Japan, 2013, 38, 105-108.	0.2	1
26	Hierarchical Structure Analysis of Graft-Type Polymer Electrolyte Membranes Consisting of Cross-Linked Polytetrafluoroethylene by Small-Angle Scattering in a Wide- <i>Q</i> Range. Macromolecules, 2012, 45, 9121-9127.	4.8	19
27	Investigation of Nanopore Evolution in Track-Etched Poly(vinylidene fluoride) Membranes. Transactions of the Materials Research Society of Japan, 2012, 37, 223-226.	0.2	5
28	A Novel Characterization Method for Graftâ€Polymer Structures Chemically Attached on Thermally Stable Polymer Films. Macromolecular Chemistry and Physics, 2012, 213, 72-78.	2.2	10
29	Degradation manner of polymer grafts chemically attached on thermally stable polymer films: swelling-induced detachment of hydrophilic grafts from hydrophobic polymer substrates in aqueous media. Journal of Materials Chemistry, 2011, 21, 9343.	6.7	40
30	Preirradiation Graft Polymerization of Styrene in a Poly(tetrafluoroethylene) Film Investigated by Time-Resolved Small-Angle Neutron Scattering. International Journal of Polymer Science, 2011, 2011, 1-7.	2.7	12
31	Poly(vinylidene fluoride)-Based Ion Track Membranes with Different Pore Diameters and Shapes. SEM Observations and Conductometric Analysis. Electrochemistry, 2010, 78, 146-149.	1.4	8
32	Water Transport in Polymer Electrolyte Membranes Investigated by Dissipative Particle Dynamics Simulation. ECS Transactions, 2010, 33, 1067-1078.	0.5	8
33	Polymerization of Diphenylbutadiyne by Gamma Rays Irradiation in the Molten State. Molecular Crystals and Liquid Crystals, 2010, 521, 237-245.	0.9	12
34	Positron Annihilation Lifetime Study of Graft-Type Fluorinated Polymer Electrolyte Membranes. Materials Science Forum, 2008, 607, 70-72.	0.3	1
35	Novel UV-induced photografting process for preparing poly(tetrafluoroethylene)-based proton-conducting membranes. Journal of Polymer Science Part A, 2007, 45, 2624-2637.	2.3	26
36	Influence of pre-irradiation atmosphere on the properties of polymer electrolyte membranes prepared using radiation grafting method. Journal of Materials Science, 2007, 42, 1330-1335.	3.7	16

#	Article	IF	CITATIONS
37	Radiation grafting of styrene into crosslinked PTEE films and subsequent sulfonation for fuel cell applications. Radiation Physics and Chemistry, 2003, 67, 403-407.	2.8	79
38	Cation and Anion Exchange Membranes Prepared by Radiation-Induced Graft Polymerization for Application in Electrodialysis. Advanced Materials Research, 0, 881-883, 1157-1160.	0.3	1