Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280618/publications.pdf Version: 2024-02-01

VANCLU

#	Article	IF	CITATIONS
1	Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.	6.7	2,339
2	Water‣oluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie - International Edition, 2010, 49, 4430-4434.	7.2	2,258
3	One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49, 605-609.	5.4	783
4	3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 4480-4489.	4.0	294
5	Plasmonic Copper Sulfide-Based Materials: A Brief Introduction to Their Synthesis, Doping, Alloying, and Applications. Journal of Physical Chemistry C, 2017, 121, 13435-13447.	1.5	145
6	One-Pot Hydrothermal Synthesis of Carbon Dots with Efficient Up- and Down-Converted Photoluminescence for the Sensitive Detection of Morin in a Dual-Readout Assay. Langmuir, 2017, 33, 1043-1050.	1.6	140
7	Reversible Crystal Phase Interconversion between Covellite CuS and High Chalcocite Cu ₂ S Nanocrystals. Chemistry of Materials, 2017, 29, 4783-4791.	3.2	88
8	Recent advances in copper sulphide-based nanoheterostructures. Chemical Society Reviews, 2019, 48, 4950-4965.	18.7	85
9	Room-Temperature Synthesis of Covellite Nanoplatelets with Broadly Tunable Localized Surface Plasmon Resonance. Chemistry of Materials, 2015, 27, 2584-2590.	3.2	83
10	Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells. Journal of Colloid and Interface Science, 2018, 526, 487-496.	5.0	71
11	Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles through Reconfiguration of the Inorganic/Organic Interface. ACS Nano, 2016, 10, 9470-9477.	7.3	58
12	Kuramite Cu ₃ SnS ₄ and Mohite Cu ₂ SnS ₃ Nanoplatelet Synthesis Using Covellite CuS Templates with Sn(II) and Sn(IV) Sources. Chemistry of Materials, 2017, 29, 3555-3562.	3.2	55
13	Nd ³⁺ -Sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure. Nanoscale, 2017, 9, 10633-10638.	2.8	51
14	Heterometallic Seed-Mediated Growth of Monodisperse Colloidal Copper Nanorods with Widely Tunable Plasmonic Resonances. Nano Letters, 2020, 20, 7263-7271.	4.5	49
15	Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid. Talanta, 2019, 194, 1-6.	2.9	47
16	Valence Selectivity of Cation Incorporation into Covellite CuS Nanoplatelets. Chemistry of Materials, 2018, 30, 1399-1407.	3.2	46
17	Selective Cation Incorporation into Copper Sulfide Based Nanoheterostructures. ACS Nano, 2018, 12, 7803-7811.	7.3	46
18	SnSe@SnO ₂ core–shell nanocomposite for synchronous photothermal–photocatalytic production of clean water. Environmental Science: Nano, 2019, 6, 1507-1515.	2.2	45

Yang Liu

#	Article	IF	CITATIONS
19	Hydrogen Sensing at Room Temperature Using Flame-Synthesized Palladium-Decorated Crumpled Reduced Graphene Oxide Nanocomposites. ACS Sensors, 2020, 5, 2344-2350.	4.0	38
20	Au–Cu _{2â^'x} Se heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. Journal of Materials Chemistry B, 2017, 5, 4934-4942.	2.9	35
21	Shape Evolution of Biconcave Djurleite Cu _{1.94} S Nanoplatelets Produced from CulnS ₂ Nanoplatelets by Cation Exchange. Journal of the American Chemical Society, 2017, 139, 18598-18606.	6.6	32
22	Peptide-Mediated Growth and Dispersion of Au Nanoparticles in Water via Sequence Engineering. Journal of Physical Chemistry C, 2018, 122, 11532-11542.	1.5	26
23	Controllable Colloidal Synthesis of Tin(II) Chalcogenide Nanocrystals and Their Solutionâ€Processed Flexible Thermoelectric Thin Films. Small, 2018, 14, e1801949.	5.2	26
24	Controlled Synthesis of Cu _{2–<i>x</i>} Se Nanoparticles as Near-Infrared Photothermal Agents and Irradiation Wavelength Dependence of Their Photothermal Conversion Efficiency. Langmuir, 2018, 34, 13905-13909.	1.6	25
25	Can the Morphology of Biconcave Metal Sulfide Nanoplatelets Be Preserved during Cation Exchange?. Chemistry of Materials, 2019, 31, 5706-5712.	3.2	19
26	A general approach to multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a flame-based process. Nanoscale, 2019, 11, 19571-19578.	2.8	19
27	Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands. ACS Applied Materials & Interfaces, 2018, 10, 33640-33651.	4.0	18
28	Tuning Materials-Binding Peptide Sequences toward Gold- and Silver-Binding Selectivity with Bayesian Optimization. ACS Nano, 2021, 15, 18260-18269.	7.3	18
29	Controllable colloidal synthesis of anisotropic tin dichalcogenide nanocrystals for thin film thermoelectrics. Nanoscale, 2018, 10, 2533-2541.	2.8	17
30	Ag ⁺ -Induced Shape and Composition Evolution of Covellite CuS Nanoplatelets To Produce Plate–Satellite and Biconcaveâ^Particle Heterostructures. Chemistry of Materials, 2018, 30, 8089-8098.	3.2	17
31	Galvanic replacement synthesis of multi-branched gold nanocrystals for photothermal cancer therapy. Journal of Materials Chemistry B, 2020, 8, 5491-5499.	2.9	17
32	Reduced Graphene Oxide-Wrapped Palladium Nanowires Coated with a Layer of Zeolitic Imidazolate Framework-8 for Hydrogen Sensing. ACS Applied Nano Materials, 2021, 4, 8081-8093.	2.4	17
33	Kinetically Controlled Self-Assembly of Binary Polymer-Grafted Nanocrystals into Ordered Superstructures via Solvent Vapor Annealing. Nano Letters, 2021, 21, 5053-5059.	4.5	15
34	Macromolecular Ligand Engineering for Programmable Nanoprism Assembly. Journal of the American Chemical Society, 2021, 143, 16163-16172.	6.6	15
35	Laser pyrolysis synthesis of zinc-containing nanomaterials using low-cost ultrasonic spray delivery of precursors. Powder Technology, 2020, 376, 104-112.	2.1	11
36	Synthesis and Anisotropic Electrocatalytic Activity of Covellite Nanoplatelets with Fixed Thickness and Tunable Diameter. ACS Applied Materials & amp; Interfaces, 2018, 10, 42417-42426.	4.0	10

Yang Liu

#	Article	IF	CITATIONS
37	Colloidal Synthesis of Nanohelices via Bilayer Lattice Misfit. Journal of the American Chemical Society, 2020, 142, 12777-12783.	6.6	10
38	Remote controlled optical manipulation of bimetallic nanoparticle catalysts using peptides. Catalysis Science and Technology, 2021, 11, 2386-2395.	2.1	9
39	Recovery of iron from lead-zinc metallurgical slags by bath smelting. Journal of Central South University, 2015, 22, 1256-1263.	1.2	8
40	A general and rapid room-temperature synthesis approach for metal sulphide nanocrystals with tunable properties. Nanoscale, 2019, 11, 136-144.	2.8	8
41	Binary and Ternary Colloidal Cuâ€Snâ€Te Nanocrystals for Thermoelectric Thin Films. Small, 2021, 17, e2006729.	5.2	8
42	Controlling Infrared Plasmon Resonances in Inverse-Spinel Cadmium Stannate Nanocrystals via Site-Selective Cation-Exchange Reactions. Chemistry of Materials, 2021, 33, 1954-1963.	3.2	8
43	Optical Control of Biomimetic Nanoparticle Catalysts Based upon the Metal Component. Journal of Physical Chemistry C, 2018, 122, 28055-28064.	1.5	7
44	Magnetically Controllable Flowerlike, Polyhedral Ag–Cu–Co3O4 for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2021, 13, 57814-57821.	4.0	7
45	Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet–visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films. Nano Research, 2018, 11, 520-529.	5.8	6
46	A general hierarchical flower-shaped cobalt oxide spinel template: facile method, morphology control, and enhanced saturation magnetization. Journal of Materials Chemistry C, 2020, 8, 14056-14065.	2.7	6
47	Anion exchange induced formation of kesterite copper zinc tin sulphide–copper zinc tin selenide nanoheterostructures. Nanoscale, 2021, 13, 4828-4834.	2.8	6
48	Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity. Journal of Materials Science and Technology, 2022, 97, 223-228.	5.6	6
49	Shape Control of Cu/ZnO Core–Shell Nanocubes and Related Structures for Localized Surface Plasmon Resonance. ACS Applied Nano Materials, 2021, 4, 995-999.	2.4	4
50	Atomically Resolved Characterization of Optically Driven Ligand Reconfiguration on Nanoparticle Catalyst Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 44302-44311.	4.0	3
51	A highly sensitive dual-readout assay for perfluorinated compounds based CdTe quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120753.	2.0	3