## Jose Javier Plata Ramos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2806168/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2015, 2, 150009.                                                                                                                  | 5.3  | 642       |
| 2  | The AFLOW standard for high-throughput materials science calculations. Computational Materials Science, 2015, 108, 233-238.                                                                                                     | 3.0  | 244       |
| 3  | High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model. Physical Review B, 2014, 90, .                                                   | 3.2  | 230       |
| 4  | Comparative Study on the Performance of Hybrid DFT Functionals in Highly Correlated Oxides: The<br>Case of CeO <sub>2</sub> and Ce <sub>2</sub> O <sub>3</sub> . Journal of Chemical Theory and<br>Computation, 2011, 7, 56-65. | 5.3  | 125       |
| 5  | A theoretical insight into the catalytic effect of a mixed-metal oxide at the nanometer level: The case of the highly active metal/CeOx/TiO2(110) catalysts. Journal of Chemical Physics, 2010, 132, 104703.                    | 3.0  | 93        |
| 6  | Electron Mobility via Polaron Hopping in Bulk Ceria: A First-Principles Study. Journal of Physical<br>Chemistry C, 2013, 117, 14502-14509.                                                                                      | 3.1  | 75        |
| 7  | Nature of the Mixed-Oxide Interface in Ceria–Titania Catalysts: Clusters, Chains, and Nanoparticles.<br>Journal of Physical Chemistry C, 2013, 117, 14463-14471.                                                                | 3.1  | 73        |
| 8  | An efficient and accurate framework for calculating lattice thermal conductivity of solids:<br>AFLOW—AAPL Automatic Anharmonic Phonon Library. Npj Computational Materials, 2017, 3, .                                          | 8.7  | 65        |
| 9  | Communication: Improving the density functional theory+ <i>U</i> description of CeO2 by including the contribution of the O 2 <i>p</i> electrons. Journal of Chemical Physics, 2012, 136, 041101.                               | 3.0  | 62        |
| 10 | High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation.<br>Computational Materials Science, 2016, 125, 82-91.                                                                       | 3.0  | 51        |
| 11 | Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Physical Review Materials, 2017, 1, .                                                                 | 2.4  | 47        |
| 12 | Cu Deposited on CeOx-Modified TiO <sub>2</sub> (110): Synergistic Effects at the Metal–Oxide Interface<br>and the Mechanism of the WGS Reaction. ACS Catalysis, 2016, 6, 4608-4615.                                             | 11.2 | 43        |
| 13 | Transport Properties in the CeO <sub>2–<i>x</i></sub> (111) Surface: From Charge Distribution to<br>Ion-Electron Collaborative Migration. Journal of Physical Chemistry C, 2013, 117, 25497-25503.                              | 3.1  | 41        |
| 14 | High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity. Scripta Materialia, 2017, 129, 88-93.                                                                                      | 5.2  | 40        |
| 15 | Structural, electronic and optical properties of copper, silver and gold sulfide: a DFT study.<br>Theoretical Chemistry Accounts, 2016, 135, 1.                                                                                 | 1.4  | 35        |
| 16 | Structural Defects in W-Doped TiO <sub>2</sub> (101) Anatase Surface: Density Functional Study.<br>Journal of Physical Chemistry C, 2011, 115, 16970-16976.                                                                     | 3.1  | 34        |
| 17 | Making Photo-selective TiO <sub>2</sub> Materials by Cation–Anion Codoping: From Structure and Electronic Properties to Photoactivity. Journal of Physical Chemistry C, 2012, 116, 18759-18767.                                 | 3.1  | 29        |
| 18 | Gold Nanoparticles on Yttrium Modified Titania: Support Properties and Catalytic Activity. Topics in Catalysis, 2011, 54, 219-228.                                                                                              | 2.8  | 25        |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Role of Coverage and Surface Oxidation Degree in the Adsorption of Acetone on TiO <sub>2</sub> (110).<br>A Density Functional Study. Journal of Physical Chemistry C, 2009, 113, 19973-19980.                                          | 3.1  | 24        |
| 20 | Surface oxygen vacancies in gold based catalysts for CO oxidation. RSC Advances, 2014, 4, 13145-13152.                                                                                                                                 | 3.6  | 24        |
| 21 | Understanding Acetaldehyde Thermal Chemistry on the TiO <sub>2</sub> (110) Rutile Surface: From Adsorption to Reactivity. Journal of Physical Chemistry C, 2011, 115, 2819-2825.                                                       | 3.1  | 22        |
| 22 | Charting the Lattice Thermal Conductivities of l–Ill–VI <sub>2</sub> Chalcopyrite Semiconductors.<br>Chemistry of Materials, 2022, 34, 2833-2841.                                                                                      | 6.7  | 22        |
| 23 | Ag <sub>2</sub> S Quantum Dot-Sensitized Solar Cells by First Principles: The Effect of Capping Ligands<br>and Linkers. Journal of Physical Chemistry A, 2017, 121, 7290-7296.                                                         | 2.5  | 17        |
| 24 | Understanding the Interplay of Dopants, Interfaces, and Anionic Conductivity in Doped Ceria/Zirconia<br>Heteroepitaxial Structures. Chemistry of Materials, 2014, 26, 3385-3390.                                                       | 6.7  | 16        |
| 25 | Vinyl Acetate Synthesis on Homogeneous and Heterogeneous Pd-Based Catalysts: A Theoretical<br>Analysis on the Reaction Mechanisms. Journal of Physical Chemistry A, 2009, 113, 11758-11762.                                            | 2.5  | 13        |
| 26 | First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides.<br>Physical Chemistry Chemical Physics, 2016, 18, 5005-5011.                                                                       | 2.8  | 13        |
| 27 | Effects of the capping ligands, linkers and oxide surface on the electron injection mechanism of copper sulfide quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 14580-14587.                        | 2.8  | 12        |
| 28 | Photo-sensitizing thin-film ferroelectric oxides using materials databases and high-throughput calculations. Journal of Materials Chemistry A, 2019, 7, 27323-27333.                                                                   | 10.3 | 12        |
| 29 | The AFLOW Fleet for Materials Discovery. , 2018, , 1-28.                                                                                                                                                                               |      | 9         |
| 30 | Analysis of the variables that modify the robustness of Ti-SiO2 catalysts for alkene epoxidation: Role of silylation, deactivation and potential solutions. Molecular Catalysis, 2018, 459, 55-60.                                     | 2.0  | 9         |
| 31 | Spinodal Superlattices of Topological Insulators. Chemistry of Materials, 2018, 30, 2331-2340.                                                                                                                                         | 6.7  | 8         |
| 32 | Improving the activity of gold nanoparticles for the water-gas shift reaction using<br>TiO <sub>2</sub> –Y <sub>2</sub> O <sub>3</sub> : an example of catalyst design. Physical Chemistry<br>Chemical Physics, 2018, 20, 22076-22083. | 2.8  | 8         |
| 33 | Understanding the Photocatalytic Properties of Pt/CeO <sub><i>x</i></sub> /TiO <sub>2</sub> :<br>Structural Effects on Electronic and Optical Properties. ChemPhysChem, 2019, 20, 1624-1629.                                           | 2.1  | 8         |
| 34 | High-Throughput Screening of the Thermoelastic Properties of Ultrahigh-Temperature Ceramics. ACS<br>Applied Materials & Interfaces, 2021, 13, 29843-29857.                                                                             | 8.0  | 8         |
| 35 | Ceria(100) Nanotubes with Negative Strain Energy: A First-Principles Prediction. Journal of Physical Chemistry Letters, 2012, 3, 2092-2096.                                                                                            | 4.6  | 5         |
| 36 | Analysis of the origin of lateral interactions in the adsorption of small organic molecules on oxide surfaces. Theoretical Chemistry Accounts, 2013, 132, 1.                                                                           | 1.4  | 5         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of structure and size on the excited states dynamics of CaArn clusters. European Physical<br>Journal D, 2013, 67, 1.                                                                                                        | 1.3 | 5         |
| 38 | Machine Learning Approaches for Accelerating the Discovery of Thermoelectric Materials. ACS Symposium Series, 0, , 1-32.                                                                                                           | 0.5 | 5         |
| 39 | Connecting experimental synthetic variables with the microstructure and electronic properties of doped ferroelectric perovskites for solar cell applications using high-throughput frameworks. Acta Materialia, 2021, 204, 116466. | 7.9 | 4         |
| 40 | The AFLOW Fleet for Materials Discovery. , 2020, , 1785-1812.                                                                                                                                                                      |     | 4         |
| 41 | The AFLOW Fleet for Materials Discovery. , 2019, , 1-28.                                                                                                                                                                           |     | 0         |
| 42 | Analysis of the origin of lateral interactions in the adsorption of small organic molecules on oxide surfaces. Highlights in Theoretical Chemistry, 2014, , 177-183.                                                               | 0.0 | 0         |