Jing-Shuang Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2805424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First-Principles Determination of Active Sites of Ni Metal-Based Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 39624-39630.	8.0	41
2	Charge Transfer of Interfacial Catalysts for Hydrogen Energy. , 2022, 4, 967-977.		35
3	Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH ₃ fabrication <i>via</i> NO reduction. Physical Chemistry Chemical Physics, 2020, 22, 22627-22634.	2.8	32
4	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	3.3	29
5	Strategically Formulating Aggregationâ€Induced Emissionâ€Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Advanced Optical Materials, 2020, 8, 2000079.	7.3	26
6	A mechanistic study of B ₃₆ -supported atomic Au promoted CO ₂ electroreduction to formic acid. Journal of Materials Chemistry A, 2019, 7, 13935-13940.	10.3	25
7	Deciphering the Mechanism of Aggregation-Induced Emission of a Quinazolinone Derivative Displaying Excited-State Intramolecular Proton-Transfer Properties: A QM, QM/MM, and MD Study. Journal of Chemical Theory and Computation, 2019, 15, 5440-5447.	5.3	24
8	Towards high performance solution-processed orange organic light-emitting devices: precisely-adjusting properties of lr(<scp>iii</scp>) complexes by reasonably engineering the asymmetric configuration with second functionalized cyclometalating ligands. Journal of Materials Chemistry C. 2019. 7. 8836-8846.	5.5	20
9	High performance solution-processed organic yellow light-emitting devices and fluoride ion sensors based on a versatile phosphorescent Ir(<scp>iii</scp>) complex. Materials Chemistry Frontiers, 2019, 3, 376-384.	5.9	17
10	A Cu(II)–ATP complex efficiently catalyses enantioselective Diels–Alder reactions. Nature Communications, 2020, 11, 4792.	12.8	13
11	Directional Diels–Alder cycloadditions of isoelectronic graphene and hexagonal boron nitride in oriented external electric fields: reaction axis rule <i>vs.</i> polarization axis rule. Nanoscale, 2020, 12, 15364-15370.	5.6	11
12	Magnetic and electronic properties of porphyrin-based molecular nanowires. AIP Advances, 2016, 6, 015216.	1.3	9
13	Anchored atomic tungsten on a B ₄₀ cage: a highly active and selective single-atom catalyst for nitrogen reduction. Physical Chemistry Chemical Physics, 2021, 23, 2469-2474.	2.8	9
14	Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angewandte Chemie - International Edition, 2020, 59, 3444-3449.	13.8	8
15	Reconfigurable and tunable photo-controlled hydrogel using hydrogen bonding to drive molecule self-assembly and cross-linking. Journal of Materials Science, 2020, 55, 14740-14750.	3.7	8
16	Interface Catalysts of Ni/Co ₂ N for Hydrogen Electrochemistry. ACS Applied Materials & Interfaces, 2020, 12, 29357-29364.	8.0	8
17	Hydrogen and Halogen Bonding in Homogeneous External Electric Fields: Modulating the Bond Strengths. Chemistry - A European Journal, 2021, 27, 14042-14050.	3.3	7
18	Trapped copper in [6]cycloparaphenylene: a fully-exposed Cu ₇ single cluster for highly active and selective CO electro-reduction. Journal of Materials Chemistry A, 2021, 9, 25922-25926.	10.3	7

#	Article	IF	CITATIONS
19	Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angewandte Chemie, 2020, 132, 3472-3477.	2.0	1
20	B36 nanoflake supported nickel as an efficient single-atom catalyst for oxygen reduction reaction: A first-principles study. Molecular Catalysis, 2021, 499, 111302.	2.0	1
21	The strength and selectivity of perfluorinated <scp>nanoâ€hoops</scp> and buckybowls for anion binding and the nature of anionâ€i€ interactions. Journal of Computational Chemistry, 2023, 44, 138-148.	3.3	0