
Carla Marino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2805416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Organic and Biomolecular Chemistry, 2022, 20, 934-962.	2.8	8
2	<scp>d</scp> -Allose, a rare sugar. Synthesis of <scp>d</scp> -allopyranosyl acceptors from glucose, and their regioselectivity in glycosidation reactions. Organic and Biomolecular Chemistry, 2022, 20, 4589-4598.	2.8	4
3	Experimental and theoretical study of the O3/O4 regioselectivity of glycosylation reactions of glucopyranosyl acceptors. Tetrahedron, 2020, 76, 131719.	1.9	2
4	Defense elicitation activity of the ellagitannin HeT depends on its redox state. Scientia Horticulturae, 2020, 267, 109312.	3.6	3
5	Synthesis and characterization of α-d-Galp-(1 → 3)-β-d-Galp epitope-containing neoglycoconjugates for chagas disease serodiagnosis. Carbohydrate Research, 2019, 478, 58-67.	2.3	10
6	Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study. Beilstein Journal of Organic Chemistry, 2019, 15, 2982-2989.	2.2	6
7	Exhaustive rotamer search of the 4C1 conformation of α- and β-d-galactopyranose. Carbohydrate Research, 2017, 448, 136-147.	2.3	8
8	Galactofuranose antigens, a target for diagnosis of fungal infections in humans. Future Science OA, 2017, 3, FSO199.	1.9	18
9	Synthesis of a model trisaccharide for studying the interplay between the anti α-Gal antibody and the trans-sialidase reactions in Trypanosoma cruzi. Carbohydrate Research, 2017, 450, 30-37.	2.3	8
10	Synthesis of galactofuranosyl-(1 → 5)-thiodisaccharide glycomimetics as inhibitors of a β- <scp>d</scp> -galactofuranosidase. RSC Advances, 2015, 5, 45631-45640.	3.6	8
11	Expedient synthesis of 1,6-anhydro-α-D-galactofuranose, a useful intermediate for glycobiological tools. Beilstein Journal of Organic Chemistry, 2014, 10, 1651-1656.	2.2	3
12	Synthesis of <scp>D</scp> â€Galactofuranoseâ€Containing Molecules: Design of Galactofuranosyl Acceptors. ChemBioChem, 2014, 15, 188-204.	2.6	17
13	Synthesis of the (1→6)-linked thiodisaccharide of galactofuranose: Inhibitory activity against a β-galactofuranosidase. Bioorganic and Medicinal Chemistry, 2013, 21, 3327-3333.	3.0	16
14	Synthetic tools for the characterization of galactofuranosyl transferases: glycosylations via acylated glycosyl iodides. Carbohydrate Research, 2013, 374, 75-81.	2.3	6
15	Synthesis of a derivative of α-D-Glcp(1->2)-D-Galf suitable for further glycosylation and of α-D-Glcp(1->2)-D-Gal, a disaccharide fragment obtained from varianose. Beilstein Journal of Organic Chemistry, 2012, 8, 2142-2148.	2.2	4
16	Synthesis of S- and C-galactofuranosides via a galactofuranosyl iodide. Isolable 1-galactofuranosylthiol derivative as a new glycosyl donor. Carbohydrate Research, 2012, 362, 70-78.	2.3	14
17	Synthesis and conformational analysis of 1,2-cis fused bicyclic α-d-galactofuranosyl thiocarbamate from per-O-tert-butyldimethylsilyl-β-d-galactofuranosyl isothiocyanate. Carbohydrate Research, 2011, 346, 191-196.	2.3	6
18	Improved synthesis of phytanyl α-D-cellobiosyldiphosphate as substrate for α-D-mannosyltransferase. Arkivoc, 2011, 2011, 38-48.	0.5	0

CARLA MARINO

#	Article	IF	CITATIONS
19	Synthesis of 5-deoxy-β-d-galactofuranosides as tools for the characterization of β-d-galactofuranosidases. Bioorganic and Medicinal Chemistry, 2010, 18, 5339-5345.	3.0	13
20	Thiodisaccharides with galactofuranose or arabinofuranose as terminal units: Synthesis and inhibitory activity of an exo β-d-galactofuranosidase. Bioorganic and Medicinal Chemistry, 2009, 17, 2703-2711.	3.0	24
21	Facile Synthesis of per-O-tert-Butyldimethylsilyl-β-d-galactofuranose and Efficient Glycosylation via the Galactofuranosyl Iodide. Journal of Organic Chemistry, 2009, 74, 1994-2003.	3.2	39
22	Facile synthesis of methyl α- and β-d-[6-3H]galactofuranosides from d-galacturonic acid. Substrates for the detection of galactofuranosidases. Carbohydrate Research, 2008, 343, 1863-1869.	2.3	16
23	Two Straightforward Strategies for the Synthesis of Thiodisaccharides with a Furanose Unit as the Nonreducing End. European Journal of Organic Chemistry, 2008, 2008, 540-547.	2.4	22
24	5-Deoxy glycofuranosides by carboxyl group assisted photoinduced electron-transfer deoxygenation. Tetrahedron, 2008, 64, 1703-1710.	1.9	17
25	Deoxy Sugars: Occurrence and Synthesis. Advances in Carbohydrate Chemistry and Biochemistry, 2007, 61, 143-216.	0.9	91
26	Facile synthesis of benzyl β-d-galactofuranoside. A convenient intermediate for the synthesis of d-galactofuranose-containing molecules. Carbohydrate Research, 2006, 341, 2286-2289.	2.3	8
27	Photoinduced electron-transfer α-deoxygenation of aldonolactones. Efficient synthesis of 2-deoxy-d-arabino-hexono-1,4-lactone. Carbohydrate Research, 2006, 341, 1788-1795.	2.3	14
28	The First Chemical Synthesis of UDP[6-3H]-α-D-galactofuranose. European Journal of Organic Chemistry, 2005, 2005, 2958-2964.	2.4	17
29	Acids and Other Products of Oxidation of Sugars. ChemInform, 2004, 35, no.	0.0	Ο
30	Evidence for exo β-d-galactofuranosidase in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2003, 127, 85-88.	1.1	19
31	ACIDS AND OTHER PRODUCTS OF OXIDATION OF SUGARS. Advances in Carbohydrate Chemistry and Biochemistry, 2003, 58, 199-306.	0.9	26
32	Specific Tritium Labeling of βGalactofuranosides at the 6-Position: A Tool for βGalactofuranosidase Detection. Analytical Biochemistry, 2002, 301, 325-328.	2.4	14
33	Influence of exo β-d-galactofuranosidase inhibitors in cultures of Penicillium fellutanum and modifications in hyphal cell structure. Carbohydrate Research, 2002, 337, 891-897.	2.3	9
34	Photoinduced electron transfer and chemical α-deoxygenation of d-galactono-1,4-lactone. Synthesis of 2-deoxy-d-lyxo-hexofuranosides. Carbohydrate Research, 2002, 337, 2119-2126.	2.3	16
35	Synthesis of β-d-galactofuranosyl nucleoside analogues. A new type of β-d-galactofuranosidase inhibitor. Carbohydrate Research, 2001, 333, 123-128.	2.3	17
36	Immobilized 4-aminophenyl 1-thio-β-d-galactofuranoside as a matrix for affinity purification of an exo-β-d-galactofuranosidase. Carbohydrate Research, 1999, 320, 176-182.	2.3	24

CARLA MARINO

#	Article	IF	CITATIONS
37	Synthesis of 4-nitrophenyl β-d-fucofuranoside and β-d-fucofuranosyl-(1→3)-d-mannopyranose: modified substrates for studies on catalytic requirements of β-d-galactofuranosidase. Carbohydrate Research, 1999, 323, 7-13.	2.3	20
38	The glycosyl-aldonolactone approach for the synthesis of β-d-Galf-(1→3)-d-Manp and 3-deoxy-β-d-xylo-hexofuranosyl-(1→3)-d-Manp. Carbohydrate Research, 1998, 311, 183-189.	2.3	23
39	1-Thio-Â-D-galactofuranosides: synthesis and evaluation as Â-D-galactofuranosidase inhibitors. Glycobiology, 1998, 8, 901-904.	2.5	50
40	Reactions of per-O-benzoyl-β-D-Galf isothiocyanate, a chiral resolving agent. Tetrahedron, 1997, 53, 16009-16016.	1.9	16
41	Facile synthesis of glycofuranosyl isothiocyanates. Carbohydrate Research, 1997, 304, 257-260.	2.3	20
42	Synthesis of 4-methylcoumarin-7-yl β-d-galactofuranoside, a fluorogenic substrate for galactofuranosidase. Carbohydrate Research, 1995, 276, 209-213.	2.3	10
43	Benzoylated hexa-2,4-dien-4-olides from aldono-1,4-lactones: Stereoselective synthesis of dideoxyaldonolactone derivatives. Carbohydrate Research, 1991, 220, 145-153.	2.3	10
44	Convenient syntheses of 5-O- and 3,5-di-O-(β-d-galactofuranosyl)-d-galactofuranose. Carbohydrate Research, 1990, 200, 227-235.	2.3	34
45	Synthesis of galactofuranose disaccharides of biological significance. Carbohydrate Research, 1989, 190, 65-76.	2.3	59
46	Synthesis of p-nitrophenyl β-d-galactofuranoside. A convenient substrate for β-galactofuranosidase. Carbohydrate Research, 1986, 155, 247-251.	2.3	46