Constance Ciaudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2805391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biology, 2009, 11, 1143-1149.	10.3	915
2	Antiviral RNA Interference in Mammalian Cells. Science, 2013, 342, 235-238.	12.6	344
3	A Role for RNAi in the Selective Correction of DNA Methylation Defects. Science, 2009, 323, 1600-1604.	12.6	338
4	LINE-1 Activity in Facultative Heterochromatin Formation during X Chromosome Inactivation. Cell, 2010, 141, 956-969.	28.9	296
5	<i>Tsix</i> transcription across the <i>Xist</i> gene alters chromatin conformation without affecting <i>Xist</i> transcription: implications for X-chromosome inactivation. Genes and Development, 2005, 19, 1474-1484.	5.9	162
6	Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. ELife, 2018, 7, .	6.0	127
7	A Small-Molecule Inhibitor of Lin28. ACS Chemical Biology, 2016, 11, 2773-2781.	3.4	121
8	Comparative analysis of differential gene expression tools for RNA sequencing time course data. Briefings in Bioinformatics, 2019, 20, 288-298.	6.5	93
9	ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics, 2012, 28, 3147-3149.	4.1	91
10	Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. Rna, 2012, 18, 253-264.	3.5	84
11	Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis. Computational and Structural Biotechnology Journal, 2015, 13, 469-477.	4.1	74
12	Highly Dynamic and Sex-Specific Expression of microRNAs During Early ES Cell Differentiation. PLoS Genetics, 2009, 5, e1000620.	3.5	73
13	The Intestinal Microbiota Interferes with the microRNA Response upon Oral <i>Listeria</i> Infection. MBio, 2013, 4, e00707-13.	4.1	72
14	Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Frontiers in Cell and Developmental Biology, 2019, 7, 360.	3.7	69
15	Nuclear mRNA Degradation Pathway(s) Are Implicated in Xist Regulation and X Chromosome Inactivation. PLoS Genetics, 2006, 2, e94.	3.5	50
16	Noncanonical function of DGCR8 controls mESC exit from pluripotency. Journal of Cell Biology, 2017, 216, 355-366.	5.2	38
17	RNAi-Dependent and Independent Control of LINE1 Accumulation and Mobility in Mouse Embryonic Stem Cells. PLoS Genetics, 2013, 9, e1003791.	3.5	37
18	<i>Dicer</i> , a new regulator of pluripotency exit and <scp>LINE</scp> †elements in mouse embryonic stem cells. FEBS Open Bio, 2017, 7, 204-220.	2.3	37

CONSTANCE CIAUDO

#	Article	IF	CITATIONS
19	The Lin28/let-7 axis is critical for myelination in the peripheral nervous system. Nature Communications, 2015, 6, 8584.	12.8	36
20	Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. Nucleic Acids Research, 2014, 42, 9313-9326.	14.5	32
21	Argonaute 2 Is Required for Extra-embryonic Endoderm Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports, 2018, 10, 461-476.	4.8	32
22	Deep-Sequencing Protocols Influence the Results Obtained in Small-RNA Sequencing. PLoS ONE, 2012, 7, e32724.	2.5	31
23	Translation is required for miRNAâ€dependent decay of endogenous transcripts. EMBO Journal, 2021, 40, e104569.	7.8	22
24	Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool. Methods in Molecular Biology, 2015, 1341, 321-343.	0.9	20
25	Regulation of LINE-1 in mammals. Biomolecular Concepts, 2014, 5, 409-428.	2.2	17
26	The Role of RNA Interference in Stem Cell Biology: Beyond the Mutant Phenotypes. Journal of Molecular Biology, 2017, 429, 1532-1543.	4.2	17
27	Prediction of the miRNA interactome – Established methods and upcoming perspectives. Computational and Structural Biotechnology Journal, 2020, 18, 548-557.	4.1	15
28	girafe – an R/Bioconductor package for functional exploration of aligned next-generation sequencing reads. Bioinformatics, 2010, 26, 2902-2903.	4.1	12
29	Monitoring Long Interspersed Nuclear Element 1 Expression During Mouse Embryonic Stem Cell Differentiation. Methods in Molecular Biology, 2016, 1400, 237-259.	0.9	12
30	A SAGE approach to identifying novel <i>trans</i> -acting factors involved in the X inactivation process. Cytogenetic and Genome Research, 2006, 113, 325-335.	1.1	9
31	An RNA tool kit to study the status of mouse ES cells: Sex determination and stemness. Methods, 2013, 63, 85-92.	3.8	9
32	AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Science Alliance, 2022, 5, e202101277.	2.8	9
33	Fast In Vitro Procedure to Identify Extraembryonic Differentiation Defect of Mouse Embryonic Stem Cells. STAR Protocols, 2020, 1, 100127.	1.2	8
34	LINE-1 Activity in Facultative Heterochromatin Formation during X Chromosome Inactivation. Cell, 2016, 166, 782.	28.9	5
35	Versatility of DGCR8 controls stem cell fate. Cell Cycle, 2017, 16, 729-730.	2.6	5
36	Vector Integration Sites Identification for Gene-Trap Screening in Mammalian Haploid Cells. Scientific Reports, 2017, 7, 44736.	3.3	5

#	Article	IF	CITATIONS
37	3D Synthetic Microstructures Fabricated by Twoâ€Photon Polymerization Promote Homogeneous Expression of NANOG and ESRRB in Mouse Embryonic Stem Cells. Advanced Materials Interfaces, 2021, 8, 2001964.	3.7	4
38	Regulation of LINE-1 Elements by miR-128 Is Not Conserved in Mouse Embryonic Stem Cells. Frontiers in Genetics, 2018, 9, 683.	2.3	3
39	Inhibition of FGF and TGF-β Pathways in hESCs Identify STOX2 as a Novel SMAD2/4 Cofactor. Biology, 2020, 9, 470.	2.8	3
40	Exit from Pluripotency Assay of Mouse Embryonic Stem Cells. Bio-protocol, 2017, 7, e2507.	0.4	3
41	Argonaute proteins regulate a specific network of genes through KLF4 in mouse embryonic stem cells. Stem Cell Reports, 2022, 17, 1070-1080.	4.8	2
42	Non-canonical functions of the microprocessor. Nature Reviews Molecular Cell Biology, 2021, 22, 372-372.	37.0	1
43	Editorial: The RNA Revolution in Embryonic Development and Cell Differentiation in Health and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 715341.	3.7	1