Yasuhiro Mie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2804956/publications.pdf

Version: 2024-02-01

687363 752698 37 443 13 20 citations h-index g-index papers 37 37 37 457 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Electrochemically Driven Drug Metabolism by Membranes Containing Human Cytochrome P450. Journal of the American Chemical Society, 2009, 131, 6646-6647.	13.7	73
2	Function Control of Anti-microRNA Oligonucleotides Using Interstrand Cross-Linked Duplexes. Molecular Therapy - Nucleic Acids, 2018, 10, 64-74.	5.1	28
3	Electrochemistry of monoazahemin reconstituted myoglobin at an indium oxide electrode. Journal of Electroanalytical Chemistry, 1997, 420, 5-9.	3.8	25
4	Mass preparation and technological development of an antifreeze protein. Synthesiology, 2008, 1, 7-14.	0.2	23
5	Anodized gold surface enables mediator-free and low-overpotential electrochemical oxidation of NADH: A facile method for the development of an NAD+-dependent enzyme biosensor. Sensors and Actuators B: Chemical, 2019, 288, 512-518.	7.8	22
6	Enzyme immunoassay of insulin at picomolar levels based on the coulometric determination of hydrogen peroxide. Sensors and Actuators B: Chemical, 2008, 135, 304-308.	7.8	20
7	p-Aminothiophenol modification on gold surface improves stability for electrochemically driven cytochrome P450 microsome activity. Electrochimica Acta, 2014, 115, 364-369.	5.2	18
8	Facile control of surface crystallographic orientation of anodized nanoporous gold catalyst and its application for highly efficient hydrogen evolution reaction. Journal of Catalysis, 2020, 389, 476-482.	6.2	17
9	Electroanalytical chemistry of myoglobin with modification of distal histidine by cyanated imidazole. Journal of Electroanalytical Chemistry, 1999, 468, 9-18.	3.8	16
10	Gold sputtered electrode surfaces enhance direct electron transfer reactions of human cytochrome P450s. Electrochemistry Communications, 2010, 12, 680-683.	4.7	16
11	Electrochemistry of myoglobins reconstituted with azahemes and mesohemes. Bioelectrochemistry, 1998, 46, 175-184.	1.0	15
12	Functional Evaluation of Heme Vinyl Groups in Myoglobin with Symmetric Protoheme Isomersâ€. Biochemistry, 2004, 43, 13149-13155.	2.5	15
13	Nanoporous Structure of Gold Electrode Fabricated by Anodization and Its Efficacy for Direct Electrochemistry of Human Cytochrome P450. Chemistry Letters, 2016, 45, 640-642.	1.3	15
14	Size-controlled fabrication of gold nanodome arrays and its application to enzyme electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 388-392.	4.7	13
15	Effect of rapid heme rotation on electrochemistry of myoglobin. Electrochimica Acta, 2000, 45, 2903-2909.	5.2	12
16	Electrochemical Properties of Interstrand Cross-Linked DNA Duplexes Labeled with Nile Blue. Langmuir, 2012, 28, 17211-17216.	3.5	12
17	Determination of Hydrogen Peroxide Based on the Charge Accumulation and Electrochemical Reduction at an Osmium Complex/Peroxidase-coated Electrode. Chemistry Letters, 2007, 36, 1148-1149.	1.3	11
18	Comparison of Enzymatic Recycling Electrodes for Measuring Aminophenol: Development of a Highly Sensitive Natriuretic Peptide Assay System. Analytical Sciences, 2008, 24, 577-582.	1.6	10

#	Article	IF	Citations
19	A novel membrane-anchored cytochrome c-550 of alkaliphilic BacillusÂclarkii K24-1U: expression, molecular features and properties of redox potential. Extremophiles, 2009, 13, 491-504.	2.3	9
20	Interfacial electron transfer kinetics of myoglobins chemically modified with succinic anhydride at an indium oxide electrode. Journal of Electroanalytical Chemistry, 2008, 624, 305-309.	3.8	8
21	Direct electrochemistry of engineered cytochrome b562 molecules with a ligand binding pocket. Journal of Inorganic Biochemistry, 2005, 99, 1245-1249.	3.5	7
22	End-tether Structure of DNA Alters Electron-transfer Pathway of Redox-labeled Oligo-DNA Duplex at Electrode Surface. Chemistry Letters, 2012, 41, 62-64.	1.3	7
23	Electrochemical analysis of heme functions of myoglobin using semi-artificial myoglobins. Journal of Electroanalytical Chemistry, 2006, 588, 226-234.	3.8	6
24	Electrochemical Oxidation of Monosaccharides at Nanoporous Gold with Controlled Atomic Surface Orientation and Non-Enzymatic Galactose Sensing. Sensors, 2020, 20, 5632.	3.8	6
25	Notable deuterium effect on the electron transfer rate of myoglobin. Chemical Communications, 2005, , 250.	4.1	5
26	Physiological role and redox properties of a small cytochrome c5, cytochrome c-552, from alkaliphile, Pseudomonas alcaliphila AL15-21T. Journal of Bioscience and Bioengineering, 2009, 108, 465-470.	2.2	5
27	Fabrication and characterization of nanoporous gold on microelectrode. Journal of Electroanalytical Chemistry, 2016, 783, 188-191.	3.8	5
28	Nanoporous gold based electrodes for electrochemical studies of human neuroglobin. Electrochemistry Communications, 2020, 110, 106621.	4.7	5
29	A Highly Sensitive Assay to Determine Atrial Natriuretic Peptides by Electrochemical Enzyme Immunoassays. Electrochemistry, 2006, 74, 138-140.	1.4	4
30	Highly-sensitive Biosensors with Chemically-amplified Responses. Electrochemistry, 2008, 76, 515-521.	1.4	4
31	Electrochemically boosted cytochrome P450 reaction that efficiently produces 25-hydroxyvitamin D3. Journal of Catalysis, 2020, 384, 30-36.	6.2	4
32	Phototriggered Chemical Reduction of NADP+by Zn-reconstituted Myoglobin and Triethanolamine as a Sacrificial Donor. Chemistry Letters, 2005, 34, 1032-1033.	1.3	2
33	Direct Electrochemistry of Microsomal Human Flavin-containing Monooxygenases 1 and 3 on Naphthalenethiol Thin Films. ECS Electrochemistry Letters, 2013, 2, G5-G7.	1.9	2
34	Adsorptive Stripping Voltammetry for the Determination of Dissolved Oxygen Using a Mesoporous Pt Microelectrode. Journal of the Electrochemical Society, 2019, 166, B542-B546.	2.9	2
35	Electrochemical Molecular Conversion of α-Keto Acid to Amino Acid at a Low Overpotential Using a Nanoporous Gold Catalyst. International Journal of Molecular Sciences, 2021, 22, 9442.	4.1	1
36	Selective Protein Patterning Based on the Micro-Structured Organosilane Self-Assembled Monolayer by Vacuum Ultraviolet Light Lithography. Journal of Nanoscience and Nanotechnology, 2009, 9, 7318-23.	0.9	0

#	Article	IF	CITATIONS
37	Redox State Control of Human Cytoglobin by Direct Electrochemical Method to Investigate Its Function in Molecular Basis. Chemical and Pharmaceutical Bulletin, 2020, 68, 806-809.	1.3	O