
Margit Schwikowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2804928/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514, 218-222.	13.7	3,582
2	Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmospheric Chemistry and Physics, 2004, 4, 2465-2480.	1.9	225
3	Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland. Journal of Geophysical Research, 1997, 102, 19707-19715.	3.3	210
4	Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	186
5	A study of an outstanding Saharan dust event at the high-alpine site Jungfraujoch, Switzerland. Atmospheric Environment, 1995, 29, 1829-1842.	1.9	173
6	Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmospheric Chemistry and Physics, 2015, 15, 1299-1312.	1.9	163
7	Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmospheric Chemistry and Physics, 2014, 14, 8089-8103.	1.9	157
8	Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1328945.	0.8	147
9	Historical Record of European Emissions of Heavy Metals to the Atmosphere Since the 1650s from Alpine Snow/Ice Cores Drilled near Monte Rosa. Environmental Science & Technology, 2004, 38, 4085-4090.	4.6	130
10	Source Apportionment of Aerosols by ¹⁴ C Measurements in Different Carbonaceous Particle Fractions. Radiocarbon, 2004, 46, 475-484.	0.8	123
11	Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). Journal of Geophysical Research, 1999, 104, 21227-21236.	3.3	122
12	Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmospheric Chemistry and Physics, 2006, 6, 5381-5390.	1.9	105
13	Post-17th-Century Changes of European Lead Emissions Recorded in High-Altitude Alpine Snow and Ice. Environmental Science & Technology, 2004, 38, 957-964.	4.6	99
14	Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.). Journal of Glaciology, 2000, 46, 507-515.	1.1	91
15	Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 – Part 1: Source apportionment and spatial variability. Atmospheric Chemistry and Physics, 2014, 14, 13551-13570.	1.9	89
16	Climate variability during the last 1000Âyears inferred from Andean ice cores: A review of methodology and recent results. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281, 229-241.	1.0	88
17	Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010. Atmospheric Chemistry and Physics, 2011, 11, 10011-10030.	1.9	87
18	Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl). Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 76.	0.8	84

#	Article	IF	CITATIONS
19	Scavenging of atmospheric constituents in mixed phase clouds at the high-alpine site jungfraujoch part I. Atmospheric Environment, 1998, 32, 3975-3983.	1.9	83
20	An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science Reviews, 2011, 30, 1027-1034.	1.4	82
21	Temperature response in the Altai region lags solar forcing. Geophysical Research Letters, 2009, 36, .	1.5	80
22	Transport of polluted boundary layer air from the Po Valley to high-alpine sites. Atmospheric Environment, 1998, 32, 3953-3965.	1.9	79
23	Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl). Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 76-92.	0.8	78
24	Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 2015, 9, 1213-1222.	1.5	78
25	A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. Journal of Geophysical Research, 1999, 104, 13709-13719.	3.3	77
26	A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of Geophysical Research, 2009, 114, .	3.3	77
27	The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. Cryosphere, 2015, 9, 1385-1400.	1.5	73
28	The transport history of two Saharan dust events archived in an Alpine ice core. Atmospheric Chemistry and Physics, 2006, 6, 667-688.	1.9	72
29	Estimate of European129I Releases Supported by129I Analysis in an Alpine Ice Core. Environmental Science & Technology, 2006, 40, 5891-5896.	4.6	70
30	Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. Journal of Geophysical Research, 2009, 114, .	3.3	69
31	Post 17th-Century Changes of European PAH Emissions Recorded in High-Altitude Alpine Snow and Ice. Environmental Science & Technology, 2010, 44, 3260-3266.	4.6	68
32	Inorganic nitrogen storage in alpine snow pack in the Central Alps (Switzerland). Atmospheric Environment, 2005, 39, 2249-2259.	1.9	66
33	Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m) Tj ETQq1 1 ().784314	rgBT_/Overloc
34	Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer. Atmospheric Measurement Techniques, 2014, 7, 2667-2681.	1.2	64
35	Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history. Science Advances, 2015, 1, e1400196.	4.7	64
36	19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere, 2018, 12, 3311-3331.	1.5	64

#	Article	IF	CITATIONS
37	Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Scientific Reports, 2017, 7, 40501.	1.6	63
38	Plutonium from Global Fallout Recorded in an Ice Core from the Belukha Glacier, Siberian Altai. Environmental Science & Technology, 2004, 38, 6507-6512.	4.6	61
39	Dimethyl sulfide, methane sulfonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay. Journal of Geophysical Research, 1996, 101, 22855-22867.	3.3	60
40	Meltwater-induced relocation of chemical species in Alpine firn. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 192.	0.8	60
41	Deposition History of Polychlorinated Biphenyls to the Lomonosovfonna Glacier, Svalbard: A 209 Congener Analysis. Environmental Science & Technology, 2013, 47, 12064-12072.	4.6	59
42	A130 years deposition record of sulfate, nitrate and chloride from a high-alpine glacier. Water, Air, and Soil Pollution, 1995, 85, 603-609.	1.1	58
43	Effects of postdepositional processes on snow composition of a subtropical glacier (Cerro Tapado,) Tj ETQq1 1 0.	784314 rg	gBT /Overloc 58
44	Ice-Core Based Assessment of Historical Anthropogenic Heavy Metal (Cd, Cu, Sb, Zn) Emissions in the Soviet Union. Environmental Science & Technology, 2014, 48, 2635-2642.	4.6	57
45	Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. Journal of Geophysical Research, 2006, 111, .	3.3	56
46	Contamination of Alpine snow and ice at Colle Gnifetti, Swiss/Italian Alps, from nuclear weapons tests. Atmospheric Environment, 2011, 45, 587-593.	1.9	56
47	A historical record of ammonium concentrations from a glacier in the Alps. Geophysical Research Letters, 1996, 23, 2741-2744.	1.5	54
48	Glaciochemical investigation of an ice core from Belukha glacier, Siberian Altai. Geophysical Research Letters, 2003, 30, .	1.5	53
49	Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai. Journal of Geophysical Research, 2006, 111, .	3.3	53
50	Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes). Climate of the Past, 2006, 2, 21-30.	1.3	53
51	Temporal variations of perfluoroalkyl substances and polybrominated diphenyl ethers in alpine snow. Environmental Pollution, 2013, 178, 367-374.	3.7	53
52	Radon and thoron decay product and 210Pb measurements at Jungfraujoch, Switzerland. Atmospheric Environment, 1995, 29, 607-616.	1.9	52
53	Ammonium concentration in ice cores: A new proxy for regional temperature reconstruction?. Journal of Geophysical Research, 2010, 115, .	3.3	52
54	The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quaternary Science Reviews, 2013, 69, 59-68.	1.4	52

#	Article	IF	CITATIONS
55	Dimethyl sulfide and its oxidation products in the atmosphere of the Atlantic and Southern Oceans. Atmospheric Environment, 1996, 30, 1895-1906.	1.9	50
56	A multi-proxy approach for revealing recent climatic changes in the Russian Altai. Climate Dynamics, 2012, 38, 175-188.	1.7	49
57	Meltwater-induced relocation of chemical species in Alpine firn. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 192-203.	0.8	48
58	Microgram level radiocarbon (14C) determination on carbonaceous particles in ice. Nuclear Instruments & Methods in Physics Research B, 2007, 259, 518-525.	0.6	47
59	Anthropogenic versus natural sources of atmospheric sulphate from an Alpine ice core. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 938.	0.8	45
60	Influences of vertical transport and scavenging on aerosol particle surface area and radon decay product concentrations at the Jungfraujoch (3454 m above sea level). Journal of Geophysical Research, 2000, 105, 19869-19879.	3.3	45
61	A 750 year ice core record of past biogenic emissions from Siberian boreal forests. Geophysical Research Letters, 2009, 36, .	1.5	45
62	Towards radiocarbon dating of ice cores. Journal of Glaciology, 2009, 55, 985-996.	1.1	45
63	Comparison of techniques for dating of subsurface ice from Monlesi ice cave, Switzerland. Journal of Glaciology, 2007, 53, 374-384.	1.1	44
64	Age of the Mt.ÂOrtles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum. Cryosphere, 2016, 10, 2779-2797.	1.5	43
65	Temperature Trends in the Northwestern Tibetan Plateau Constrained by Ice Core Water Isotopes Over the Past 7,000 Years. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032560.	1.2	43
66	Three Centuries of Eastern European and Altai Lead Emissions Recorded in a Belukha Ice Core. Environmental Science & Technology, 2012, 46, 4323-4330.	4.6	40
67	Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries. Geophysical Research Letters, 2019, 46, 4007-4016.	1.5	40
68	Dating of two nearby ice cores from the Illimani, Bolivia. Journal of Geophysical Research, 2003, 108, .	3.3	39
69	Accuracy of Continuous Ice-Core Trace-Element Analysis by Inductively Coupled Plasma Sector Field Mass Spectrometry. Environmental Science & Technology, 2003, 37, 2267-2273.	4.6	39
70	Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau. Geophysical Research Letters, 2015, 42, 2434-2441.	1.5	39
71	Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene. Journal of Glaciology, 2016, 62, 411-439.	1.1	37
72	Transfer of atmospheric constituents into an alpine snow field. Atmospheric Environment Part A General Topics, 1993, 27, 1881-1890.	1.3	36

5

#	Article	IF	CITATIONS
73	Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 2018, 12, 2341-2348.	1.5	36
74	Determination of lead concentrations and isotope ratios in recent snow samples from high alpine sites with a double focusing ICP-MS. Fresenius' Journal of Analytical Chemistry, 1997, 359, 382-384.	1.5	34
75	Quantitative summer temperature reconstruction derived from a combined biogenic Si and chironomid record from varved sediments of Lake Silvaplana (south-eastern Swiss Alps) back to AD 1177. Quaternary Science Reviews, 2010, 29, 2719-2730.	1.4	34
76	An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard. Atmospheric Chemistry and Physics, 2018, 18, 12777-12795.	1.9	34
77	Carbonaceous particles reveal that Late Holocene dust causes the dark region in the western ablation zone of the Greenland ice sheet. Journal of Glaciology, 2012, 58, 787-794.	1.1	33
78	Polychlorinated Biphenyls in Glaciers. 1. Deposition History from an Alpine Ice Core. Environmental Science & Technology, 2014, 48, 7842-7848.	4.6	33
79	Radiocarbon dating of glacier ice: overview, optimisation, validation and potential. Cryosphere, 2016, 10, 3091-3105.	1.5	33
80	Cation trace analysis of snow and firn samples from high-alpine sites by ion chromatography. Journal of Chromatography A, 1995, 706, 249-252.	1.8	32
81	Thallium as a Tracer for Preindustrial Volcanic Eruptions in an Ice Core Record from Illimani, Bolivia. Environmental Science & Technology, 2010, 44, 888-893.	4.6	32
82	Photoinduced reduction of divalent mercury in ice by organic matter. Chemosphere, 2011, 82, 199-203.	4.2	32
83	lce records provide new insights into climatic vulnerability of Central Asian forest and steppe communities. Global and Planetary Change, 2018, 169, 188-201.	1.6	31
84	Legacy organochlorine pollutants in glacial watersheds: a review. Environmental Sciences: Processes and Impacts, 2017, 19, 1474-1483.	1.7	30
85	A 320 Year Ice-Core Record of Atmospheric Hg Pollution in the Altai, Central Asia. Environmental Science & Technology, 2017, 51, 11597-11606.	4.6	29
86	A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia. Climate of the Past, 2019, 15, 579-592.	1.3	29
87	Reconstruction of European Air Pollution from Alpine Ice Cores. , 2004, , 95-119.		29
88	Potential for climate variability reconstruction from Andean glaciochemical records. Annals of Glaciology, 2002, 35, 443-450.	2.8	28
89	Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago. Scientific Reports, 2017, 7, 41855.	1.6	28
90	Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport. Atmospheric Chemistry and Physics, 2016, 16, 1029-1043.	1.9	27

#	Article	IF	CITATIONS
91	Title is missing!. Climatic Change, 2003, 59, 157-175.	1.7	25
92	³⁶ Cl bomb peak: comparison of modeled and measured data. Atmospheric Chemistry and Physics, 2009, 9, 4145-4156.	1.9	25
93	Net accumulation rates derived from ice core stable isotope records of PÃo XI glacier, Southern Patagonia Icefield. Cryosphere, 2013, 7, 1635-1644.	1.5	25
94	Accumulation Studies at a High Elevation Glacier Site in Central Karakoram. Advances in Meteorology, 2014, 2014, 1-12.	0.6	25
95	Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity. Cryosphere, 2017, 11, 17-32.	1.5	24
96	ENSO signals of the twentieth century in an ice core from Nevado Illimani, Bolivia. Journal of Geophysical Research, 2005, 110, .	3.3	23
97	Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier Ice. Environmental Science & Technology, 2015, 49, 14085-14091.	4.6	23
98	An empirical perspective for understanding climate change impacts in Switzerland. Regional Environmental Change, 2018, 18, 205-221.	1.4	23
99	Apparent discrepancy of Tibetan ice core <i>l´</i> ¹⁸ O records may be attributed to misinterpretation of chronology. Cryosphere, 2019, 13, 1743-1752.	1.5	23
100	Polychlorinated Biphenyls in Glaciers. 2. Model Results of Deposition and Incorporation Processes. Environmental Science & Technology, 2014, 48, 7849-7857.	4.6	22
101	SNOSP: Ion deposition and concentration in high alpine snow packs. Tellus, Series B: Chemical and Physical Meteorology, 2022, 49, 56.	0.8	22
102	An Alpine ice-core record of anthropogenic HF and HCl emissions. Geophysical Research Letters, 2000, 27, 3225-3228.	1.5	21
103	A method to reconstruct past accumulation rates in alpine firn regions: A study on Fiescherhorn, Swiss Alps. Journal of Geophysical Research, 2006, 111, .	3.3	21
104	Influence of the Tungurahua eruption on the ice core records of Chimborazo, Ecuador. Cryosphere, 2010, 4, 561-568.	1.5	21
105	Scavenging of atmospheric constituents in mixed phase clouds at the high-alpine site jungfraujoch part III. Atmospheric Environment, 1998, 32, 4001-4010.	1.9	20
106	Vanishing High Mountain Glacial Archives: Challenges and Perspectives. Environmental Science & Technology, 2015, 49, 9499-9500.	4.6	20
107	A Temperate Alpine Glacier as a Reservoir of Polychlorinated Biphenyls: Model Results of Incorporation, Transport, and Release. Environmental Science & Technology, 2016, 50, 5572-5579.	4.6	20
108	Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier. Cryosphere, 2015, 9, 1075-1087.	1.5	20

#	Article	IF	CITATIONS
109	SNOSP: Ion deposition and concentration in high alpine snow packs. Tellus, Series B: Chemical and Physical Meteorology, 1997, 49, 56-71.	0.8	19
110	Scavenging of atmospheric constituents in mixed phase clouds at the high-alpine site jungfraujoch—part II. Influence of riming on the scavenging of particulate and gaseous chemical species. Atmospheric Environment, 1998, 32, 3985-4000.	1.9	19
111	Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field. Cryosphere, 2017, 11, 469-482.	1.5	19
112	Palynological insights into global change impacts on Arctic vegetation, fire, and pollution recorded in Central Greenland ice. Holocene, 2019, 29, 1189-1197.	0.9	19
113	Mt. Everest's highest glacier is a sentinel for accelerating ice loss. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	19
114	A potential high-elevation ice-core site at Hielo PatagïŒnico Sur. Annals of Glaciology, 2006, 43, 8-13.	2.8	18
115	Ion fractionation in young sea ice from Kongsfjorden, Svalbard. Annals of Glaciology, 2011, 52, 301-310.	2.8	18
116	Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001. Climate of the Past, 2014, 10, 1093-1108.	1.3	18
117	Surface mass balance and water stable isotopes derived from firn cores on three ice rises, Fimbul Ice Shelf, Antarctica. Cryosphere, 2016, 10, 2763-2777.	1.5	18
118	Ionic and stable isotope chemistry as indicators of water sources to the Upper Mendoza River basin, Central Andes of Argentina. Hydrological Sciences Journal, 2017, 62, 588-605.	1.2	18
119	Meltâ€Induced Fractionation of Major Ions and Trace Elements in an Alpine Snowpack. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1647-1657.	1.0	18
120	Characterization of Size-Fractionated Aerosol from the Jungfraujoch (3580 m asl) Using Total Reflection X-Ray Fluorescence (TXRF). International Journal of Environmental Analytical Chemistry, 2000, 76, 1-16.	1.8	17
121	800-year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions. Atmospheric Chemistry and Physics, 2015, 15, 7287-7300.	1.9	17
122	Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes. Environmental Science & Technology, 2015, 49, 14092-14100.	4.6	17
123	Release of PCBs from Silvretta glacier (Switzerland) investigated in lake sediments and meltwater. Environmental Science and Pollution Research, 2016, 23, 10308-10316.	2.7	17
124	Aromatic acids in an Arctic ice core from Svalbard: a proxy record of biomass burning. Climate of the Past, 2018, 14, 637-651.	1.3	17
125	A quantitative comparison of microfossil extraction methods from ice cores. Journal of Glaciology, 2018, 64, 432-442.	1.1	16
126	Impact and implications of meltwater percolation on trace element records observed in a high-Alpine ice core. Journal of Glaciology, 2018, 64, 877-886.	1.1	16

#	Article	IF	CITATIONS
127	Continuous melting and ion chromatographic analyses of ice cores. Journal of Chromatography A, 2001, 920, 193-200.	1.8	15
128	A first shallow firn-core record from Glaciar La Ollada, Cerro Mercedario, central Argentine Andes. Annals of Glaciology, 2006, 43, 14-22.	2.8	15
129	Tropical Andean glacier reveals colonial legacy in modern mountain ecosystems. Quaternary Science Reviews, 2019, 220, 1-13.	1.4	15
130	A new sensitive method for the quantification of glyoxal and methylglyoxal in snow and ice by stir bar sorptive extraction and liquid desorption-HPLC-ESI-MS. Analytical and Bioanalytical Chemistry, 2014, 406, 2525-2532.	1.9	14
131	A new thermal drilling system for high-altitude or temperate glaciers. Annals of Glaciology, 2014, 55, 131-136.	2.8	14
132	New glacier evidence for ice-free summits during the life of the Tyrolean Iceman. Scientific Reports, 2020, 10, 20513.	1.6	14
133	Biological proxies recorded in a Belukha ice core, Russian Altai. Climate of the Past, 2013, 9, 2399-2411.	1.3	13
134	Microgram-Level Radiocarbon Determination of Carbonaceous Particles in Firn and Ice Samples: Pretreatment and OC/EC Separation. Radiocarbon, 2013, 55, 383-390.	0.8	13
135	Spectral signatures of submicron scale light-absorbing impurities in snow and ice using hyperspectral microscopy. Journal of Glaciology, 2018, 64, 377-386.	1.1	12
136	Glaciers and Climate in the Andes between the Equator and 30° S: What is Recorded under Extreme Environmental Conditions?. Advances in Global Change Research, 2003, , 157-175.	1.6	12
137	A method to sample and separate ice crystals and supercooled cloud droplets in mixed phased clouds for subsequent chemical analysis. Atmospheric Environment, 2000, 34, 3629-3633.	1.9	11
138	Application of the radionuclide ²¹⁰ Pb in glaciology – an overview. Journal of Glaciology, 2020, 66, 447-456.	1.1	11
139	Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene. Cryosphere, 2021, 15, 2109-2114.	1.5	11
140	Analysis of size-classified ice crystals by capillary electrophoresis. Journal of Chromatography A, 2000, 871, 391-398.	1.8	10
141	Trace analysis of hydrophobic micropollutants in aqueous samples using capillary traps. Chemosphere, 2014, 106, 51-56.	4.2	10
142	Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition. Journal of Glaciology, 2015, 61, 1171-1182.	1.1	10
143	Implementing microscopic charcoal particles into a global aerosol–climate model. Atmospheric Chemistry and Physics, 2018, 18, 11813-11829.	1.9	10
144	A Comprehensive Nontarget Analysis for the Molecular Reconstruction of Organic Aerosol Composition from Glacier Ice Cores. Environmental Science & Technology, 2019, 53, 12565-12575.	4.6	10

#	Article	IF	CITATIONS
145	Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps. Cryosphere, 2021, 15, 677-694.	1.5	10
146	Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction. Cryosphere, 2021, 15, 1537-1550.	1.5	10
147	Measurements of concentration, chemical composition and size distribution of background aerosol at high alpine stations. Journal of Aerosol Science, 1990, 21, S321-S324.	1.8	9
148	The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station (3454 m), Switzerland. Journal of Aerosol Science, 1996, 27, S105-S106.	1.8	9
149	A synthetic ice core approach to estimate ion relocation in an ice field site experiencing periodical melt: a case study on Lomonosovfonna, Svalbard. Cryosphere, 2016, 10, 961-976.	1.5	9
150	Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier,ÂWashington State, USA, as Reconstructed From aÂ158â€mâ€Long Ice Core. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031126.	1.2	9
151	First mercury determination in snow and firn from high-mountain glaciers in the Siberian Altai by CV-ICP-MS. European Physical Journal Special Topics, 2003, 107, 431-434.	0.2	8
152	Simulating the temperature and precipitation signal in an Alpine ice core. Climate of the Past, 2013, 9, 2013-2022.	1.3	8
153	Twentieth-century warming preserved in a Geladaindong mountain ice core, central Tibetan Plateau. Annals of Glaciology, 2016, 57, 70-80.	2.8	8
154	Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica. Cryosphere, 2018, 12, 1681-1697.	1.5	8
155	Alpine Glacier Reveals Ecosystem Impacts of Europe's Prosperity and Peril Over the Last Millennium. Geophysical Research Letters, 2021, 48, e2021GL095039.	1.5	8
156	Anthropogenic influence on surface changes at the Olivares glaciers; Central Chile. Science of the Total Environment, 2022, 833, 155068.	3.9	8
157	In-cloud scavenging by snow at a high-alpine site. Journal of Aerosol Science, 1991, 22, S541-S544.	1.8	7
158	Intercomparison of snow sampling and analysis within the alpine-wide snowpack investigation (SNOSP). Water, Air, and Soil Pollution, 1997, 93, 67-91.	1.1	7
159	Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core. Cryosphere, 2021, 15, 4135-4143.	1.5	7
160	Comparison of historical and recent accumulation rates on Abramov Glacier, Pamir Alay. Journal of Glaciology, 2021, 67, 253-268.	1.1	7
161	¹⁴ C Measurements of Ice Samples from the Juvfonne Ice Tunnel, Jotunheimen, Southern Norway—Validation of a ¹⁴ C Dating Technique for Glacier Ice. Radiocarbon, 2013, 55, 571-578.	0.8	6
162	A continuous ice-core 10 Be record from Mongolian mid-latitudes: Influences of solar variability and local climate. Earth and Planetary Science Letters, 2016, 437, 47-56.	1.8	6

#	Article	IF	CITATIONS
163	Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores. Analytical Chemistry, 2019, 91, 5051-5057.	3.2	6
164	Sampling and chemical analysis of ice crystals as a function of size. Atmospheric Environment, 2001, 35, 5371-5376.	1.9	5
165	A new method for the determination of primary and secondary terrestrial and marine biomarkers in ice cores using liquid chromatography high-resolution mass spectrometry. Talanta, 2019, 194, 233-242.	2.9	5
166	Extraction of Dissolved Organic Carbon from Glacier Ice for Radiocarbon Analysis. Radiocarbon, 2019, 61, 681-694.	0.8	4
167	Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study. Cryosphere, 2020, 14, 3731-3745.	1.5	4
168	14C Measurements of Ice Samples from the Juvfonne Ice Tunnel, Jotunheimen, Southern Norway – Validation of a Radiocarbon Dating Technique for Glacier Ice. Radiocarbon, 2013, 55, .	0.8	3
169	Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling. Cryosphere, 2020, 14, 4233-4251.	1.5	3
170	Towards comprehensive non-target screening using heart-cut two-dimensional liquid chromatography for the analysis of organic atmospheric tracers in ice cores. Journal of Chromatography A, 2022, 1661, 462706.	1.8	3
171	Microgram-Level Radiocarbon Determination of Carbonaceous Particles in Firn and Ice Samples: Pretreatment and OC/EC Separation. Radiocarbon, 2013, 55, .	0.8	2
172	Why loss matters: Reply to the comments of Festi and others on â€~A quantitative comparison of microfossil extraction methods from ice cores' by Brugger and others (2018). Journal of Glaciology, 2019, 65, 867-868.	1.1	2
173	A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 2022, 16, 1997-2008.	1.5	2
174	Historical reconstruction of Plutonium contamination in the Swiss-Italian Alps. E3S Web of Conferences, 2013, 1, 14001.	0.2	1
175	Physico-chemical behaviour of aerosols and ccn during cloud formation at jungfraujoch (3450 m) Tj ETQq1 1 C).784314 rg	BT /Overlock
176	First Results of a Paleoatmospheric Chemistry and Climate Study of Cerro Tapado Glacier, Chile. Series of the Centro De Estudios CientÃficos De Santiago, 2002, , 157-167.	0.2	1
177	Kupferspuren im Gletscher. Nachrichten Aus Der Chemie, 2020, 68, 73-75.	0.0	0
178	High Alpine Air, Aerosol and Cloud Chemistry. , 1997, , 235-262.		0