Gisella Terre'Blanche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280474/publications.pdf

Version: 2024-02-01

777949 799663 37 522 13 21 citations h-index g-index papers 38 38 38 711 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploration of chalcones and related heterocycle compounds as ligands of adenosine receptors: therapeutics development. Molecular Diversity, 2022, 26, 1779-1821.	2.1	3
2	New fused pyrroles with rA1/A2A antagonistic activity as potential therapeutics for neurodegenerative disorders. Molecular Diversity, 2022, 26, 2211-2220.	2.1	1
3	Chalconeâ€inspired <i>r</i> A ₁ /A _{2A} adenosine receptor ligands: Ring closure as an alternative to a reactive substructure. Chemical Biology and Drug Design, 2022, 99, 416-437.	1.5	0
4	Design, synthesis and evaluation of amino-3,5-dicyanopyridines and thieno[2,3-b]pyridines as ligands of adenosine A1 receptors for the potential treatment of epilepsy. Medicinal Chemistry Research, 2022, 31, 1277-1297.	1.1	3
5	C3 amino-substituted chalcone derivative with selective adenosine rA1 receptor affinity in the micromolar range. Chemical Papers, 2021, 75, 1581-1605.	1.0	8
6	Therapeutic potentials of agonist and antagonist of adenosine receptors in type 2 diabetes. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1073-1090.	2.6	5
7	Synthesis and evaluation of methoxy substituted 2-benzoyl-1-benzofuran derivatives as lead compounds for the development adenosine A1 and/or A2A receptor antagonists. Bioorganic Chemistry, 2020, 94, 103459.	2.0	6
8	Synthesis and Structure Activity Relationships of Chalcone based Benzocycloalkanone Derivatives as Adenosine A1 and/or A2A Receptor Antagonists. Drug Research, 2020, 70, 243-256.	0.7	6
9	C2-substituted quinazolinone derivatives exhibit A1 and/or A2A adenosine receptor affinities in the low micromolar range. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127274.	1.0	9
10	Methoxy substituted 2-benzylidene-1-indanone derivatives as A ₁ and/or A _{2A} AR antagonists for the potential treatment of neurological conditions. MedChemComm, 2019, 10, 300-309.	3.5	14
11	2–Benzylidene–1–Indanone Analogues as Dual Adenosine A1/A2a Receptor Antagonists for the Potential Treatment of Neurological Conditions. Drug Research, 2019, 69, 382-391.	0.7	11
12	Benzopyrone represents a privilege scaffold to identify novel adenosine A1/A2A receptor antagonists. Bioorganic Chemistry, 2018, 77, 136-143.	2.0	13
13	Evaluation of 2â€benzylideneâ€1â€ŧetralone derivatives as antagonists of A ₁ and A _{2A} adenosine receptors. Chemical Biology and Drug Design, 2018, 91, 234-244.	1.5	18
14	8-(3-phenylpropyl)-1,3,7-triethylxanthine is a synthetic caffeine substitute with stronger metabolic modulator activity. Toxicology in Vitro, 2018, 53, 114-120.	1.1	2
15	Imidazo[1,2-α]pyridines possess adenosine A1 receptor affinity for the potential treatment of cognition in neurological disorders. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3963-3967.	1.0	15
16	Benzyloxynitrostyrene analogues – A novel class of selective and highly potent inhibitors of monoamine oxidase B. European Journal of Medicinal Chemistry, 2017, 125, 1193-1199.	2.6	9
17	Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A 1 and A 2A receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5951-5955.	1.0	11
18	Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 734-738.	1.0	12

#	Article	IF	CITATIONS
19	The adenosine receptor affinities and monoamine oxidase B inhibitory properties of sulfanylphthalimide analogues. Bioorganic Chemistry, 2015, 59, 117-123.	2.0	16
20	1,3,7-Triethyl-substituted xanthinesâ€"possess nanomolar affinity for the adenosine A1 receptor. Bioorganic and Medicinal Chemistry, 2015, 23, 6641-6649.	1.4	36
21	2-Aminopyrimidines as dual adenosine A1/A2A antagonists. European Journal of Medicinal Chemistry, 2015, 104, 177-188.	2.6	25
22	The adenosine A2A antagonistic properties of selected C8-substituted xanthines. Bioorganic Chemistry, 2013, 49, 49-58.	2.0	26
23	Paracetamol prevents hyperglycinemia in vervet monkeys treated with valproate. Metabolic Brain Disease, 2012, 27, 327-335.	1.4	4
24	Novel sulfanylphthalimide analogues as highly potent inhibitors of monoamine oxidase B. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6632-6635.	1.0	6
25	Sulfanylphthalonitrile analogues as selective and potent inhibitors of monoamine oxidase B. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7367-7370.	1.0	10
26	Thio- and aminocaffeine analogues as inhibitors of human monoamine oxidase. Bioorganic and Medicinal Chemistry, 2011, 19, 7507-7518.	1.4	29
27	The Styrene Metabolite, Phenylglyoxylic Acid, Induces Striatal-Motor Toxicity in the Rat: Influence of Dose Escalation/Reduction over Time. Neurotoxicity Research, 2011, 20, 97-101.	1.3	9
28	Treatment of an adrenomyeloneuropathy patient with Lorenzo's oil and supplementation with docosahexaenoic acid-A case report. Lipids in Health and Disease, 2011, 10, 152.	1.2	11
29	Interactions of 1-methyl-3-phenylpyrrolidine and 3-methyl-1-phenyl-3-azabicyclo[3.1.0]hexane with monoamine oxidase B. Bioorganic and Medicinal Chemistry, 2010, 18, 4111-4118.	1.4	5
30	Inhibition of monoamine oxidase B by N-methyl-2-phenylmaleimides. Bioorganic and Medicinal Chemistry, 2009, 17, 3104-3110.	1.4	18
31	Structure–activity relationships in the inhibition of monoamine oxidase B by 1-methyl-3-phenylpyrroles. Bioorganic and Medicinal Chemistry, 2008, 16, 2463-2472.	1.4	26
32	Deuterium isotope effects for the oxidation of 1-methyl-3-phenyl-3-pyrrolinyl analogues by monoamine oxidase B. Bioorganic and Medicinal Chemistry, 2008, 16, 8813-8817.	1.4	3
33	Investigating the potential neuroprotective effects of statins on DNA damage in mouse striatum. Food and Chemical Toxicology, 2008, 46, 3186-3192.	1.8	9
34	Neurotoxicity studies with the monoamine oxidase B substrate 1-methyl-3-phenyl-3-pyrroline. Life Sciences, 2007, 81, 458-467.	2.0	6
35	Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues. Bioorganic and Medicinal Chemistry, 2007, 15, 3692-3702.	1.4	67
36	Screening of novel pentacyclo-undecylamines for neuroprotective activity. European Journal of Pharmacology, 2003, 458, 73-79.	1.7	32

#	Article	IF	CITATIONS
37	Physicochemical prediction of a brain–blood distribution profile in polycyclic amines. Bioorganic and Medicinal Chemistry, 2003, 11, 3569-3578.	1.4	38