Sam Maher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2804736/publications.pdf

Version: 2024-02-01

	270111	388640
1,960	25	36
citations	h-index	g-index
36	36	2374
docs citations	times ranked	citing authors
	1,960 citations 36 docs citations	1,960 25 citations h-index 36 36

#	Article	IF	CITATIONS
1	Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opinion on Drug Delivery, 2021, 18, 273-300.	2.4	36
2	Transient Permeation Enhancer \hat{A}^{\otimes} (TPE \hat{A}^{\otimes}) technology for oral delivery of octreotide: a technological evaluation. Expert Opinion on Drug Delivery, 2021, 18, 1501-1512.	2.4	39
3	Formulation strategies to improve the efficacy of intestinal permeation enhancers,. Advanced Drug Delivery Reviews, 2021, 177, 113925.	6.6	39
4	â€~Both useful in their own way': Video podcasts and typed solutions as feedback on undergraduate pharmaceutical calculations skills assessment. Currents in Pharmacy Teaching and Learning, 2020, 12, 367-377.	0.4	8
5	Transmucosal Absorption Enhancers in the Drug Delivery Field. Pharmaceutics, 2019, 11, 339.	2.0	24
6	Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics, 2019, 11, 41.	2.0	111
7	Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C10). Pharmaceutics, 2019, 11, 78.	2.0	141
8	Effect of Overencapsulation on the Disintegration and Dissolution of Licensed Formulations for Blinding in Randomized Controlled Trials. Journal of Pharmaceutical Sciences, 2019, 108, 1227-1235.	1.6	3
9	Labrasol® and Salts of Medium-Chain Fatty Acids Can Be Combined in Low Concentrations to Increase the Permeability of a Macromolecule Marker Across Isolated Rat Intestinal Mucosae. Journal of Pharmaceutical Sciences, 2018, 107, 1648-1655.	1.6	17
10	Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae. International Journal of Pharmaceutics, 2018, 539, 11-22.	2.6	35
11	Development of a Non-Aqueous Dispersion to Improve Intestinal Epithelial Flux of Poorly Permeable Macromolecules. AAPS Journal, 2017, 19, 244-253.	2.2	6
12	Design and Evaluation of Video Podcasts for Providing Online Feedback on Formative Pharmaceutical Calculations Assessments. American Journal of Pharmaceutical Education, 2017, 81, 6400.	0.7	18
13	Modified drug release using atmospheric pressure plasma deposited siloxane coatings. Journal Physics D: Applied Physics, 2016, 49, 364005.	1.3	9
14	Intestinal permeation enhancers for oral peptide delivery. Advanced Drug Delivery Reviews, 2016, 106, 277-319.	6.6	266
15	Sodium caprate-induced increases in intestinal permeability and epithelial damage are prevented by misoprostol. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 194-206.	2.0	38
16	Formulation strategies to improve oral peptide delivery. Pharmaceutical Patent Analyst, 2014, 3, 313-336.	0.4	56
17	A Whey Protein Hydrolysate Promotes Insulinotropic Activity in a Clonal Pancreatic β-Cell Line and Enhances Glycemic Function in ob/ob Mice1–3. Journal of Nutrition, 2013, 143, 1109-1114.	1.3	72
18	The mycotoxin patulin increases colonic epithelial permeability in vitro. Food and Chemical Toxicology, 2012, 50, 4097-4102.	1.8	33

#	Article	IF	CITATIONS
19	Evaluation of alkylmaltosides as intestinal permeation enhancers: Comparison between rat intestinal mucosal sheets and Caco-2 monolayers. European Journal of Pharmaceutical Sciences, 2012, 47, 701-712.	1.9	45
20	Overcoming poor permeability: translating permeation enhancers for oral peptide delivery. Drug Discovery Today: Technologies, 2012, 9, e113-e119.	4.0	74
21	Chitooligosaccharide elicits acute inflammatory cytokine response through AP-1 pathway in human intestinal epithelial-like (Caco-2) cells. Molecular Immunology, 2012, 51, 283-291.	1.0	35
22	Chapter 2.1. Nanostructures Overcoming the Intestinal Barrier: Physiological Considerations and Mechanistic Issues. RSC Drug Discovery Series, 2012, , 39-62.	0.2	4
23	Oral delivery of macromolecules: rationale underpinning Gastrointestinal Permeation Enhancement Technology (GIPET [®]). Therapeutic Delivery, 2011, 2, 1595-1610.	1.2	62
24	High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs. Peptides, 2011, 32, 1764-1773.	1.2	25
25	Restoration of rat colonic epithelium after $\langle i \rangle$ in situ $\langle i \rangle$ intestinal instillation of the absorption promoter, sodium caprate. Therapeutic Delivery, 2010, 1, 75-82.	1.2	44
26	Impact of amino acid replacements on in vitro permeation enhancement and cytotoxicity of the intestinal absorption promoter, melittin. International Journal of Pharmaceutics, 2010, 387, 154-160.	2.6	27
27	Oral absorption enhancement: taking the next steps in therapeutic delivery. Therapeutic Delivery, 2010, 1, 5-9.	1.2	8
28	Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. European Journal of Pharmaceutical Sciences, 2009, 38, 301-311.	1.9	32
29	Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae. European Journal of Pharmaceutical Sciences, 2009, 38, 291-300.	1.9	46
30	Chemical Modification of the Carboxyl Terminal of Nisin A with Biotin does not Abolish Antimicrobial Activity Against the Indicator Organism, Kocuria rhizophila. International Journal of Peptide Research and Therapeutics, 2009, 15, 219-226.	0.9	9
31	Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Advanced Drug Delivery Reviews, 2009, 61, 1427-1449.	6.6	195
32	Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol. Biochemical Pharmacology, 2008, 75, 1104-1114.	2.0	75
33	Cracking the Junction: Update on the Progress of Gastrointestinal Absorption Enhancement in the Delivery of Poorly Absorbed Drugs. Critical Reviews in Therapeutic Drug Carrier Systems, 2008, 25, 117-168.	1.2	47
34	Melittin as a Permeability Enhancer II: In Vitro Investigations in Human Mucus Secreting Intestinal Monolayers and Rat Colonic Mucosae. Pharmaceutical Research, 2007, 24, 1346-1356.	1.7	31
35	Melittin as an Epithelial Permeability Enhancer I: Investigation of Its Mechanism of Action in Caco-2 Monolayers. Pharmaceutical Research, 2007, 24, 1336-1345.	1.7	35
36	Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochemical Pharmacology, 2006, 71, 1289-1298.	2.0	215