Jonas K Olofsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2804709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Affective picture processing: An integrative review of ERP findings. Biological Psychology, 2008, 77, 247-265.	2.2	1,334
2	More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	2.0	375
3	Affective visual event-related potentials: Arousal, repetition, and time-on-task. Biological Psychology, 2007, 75, 101-108.	2.2	182
4	Demographic and Cognitive Predictors of Cued Odor Identification: Evidence from a Population-based Study. Chemical Senses, 2004, 29, 547-554.	2.0	172
5	The muted sense: neurocognitive limitations of olfactory language. Trends in Cognitive Sciences, 2015, 19, 314-321.	7.8	145
6	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	2.0	119
7	Olfactory Impairment and Subjective Olfactory Complaints Independently Predict Conversion to Dementia: A Longitudinal, Population-Based Study. Journal of the International Neuropsychological Society, 2014, 20, 209-217.	1.8	88
8	Gender Differences in Chemosensory Perception and Event-related Potentials. Chemical Senses, 2004, 29, 629-637.	2.0	85
9	To which world regions does the valence–dominance model of social perception apply?. Nature Human Behaviour, 2021, 5, 159-169.	12.0	85
10	Smell Loss Predicts Mortality Risk Regardless of Dementia Conversion. Journal of the American Geriatrics Society, 2017, 65, 1238-1243.	2.6	75
11	A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic. Nature Human Behaviour, 2021, 5, 1089-1110.	12.0	71
12	Odor identification impairment in carriers of ApoE-ɛ4 is independent of clinical dementia. Neurobiology of Aging, 2010, 31, 567-577.	3.1	70
13	A cortical pathway to olfactory naming: evidence from primary progressive aphasia. Brain, 2013, 136, 1245-1259.	7.6	68
14	Odor Identification Deficit as a Predictor of Five-Year Global Cognitive Change: Interactive Effects with Age and ApoE-ε4. Behavior Genetics, 2009, 39, 496-503.	2.1	57
15	A Designated Odor–Language Integration System in the Human Brain. Journal of Neuroscience, 2014, 34, 14864-14873.	3.6	53
16	A Time-Based Account of the Perception of Odor Objects and Valences. Psychological Science, 2012, 23, 1224-1232.	3.3	52
17	Long-term episodic memory decline is associated with olfactory deficits only in carriers of ApoE-є4. Neuropsychologia, 2016, 85, 1-9.	1.6	46
18	Phantom Smells: Prevalence and Correlates in a Population-Based Sample of Older Adults. Chemical Senses, 2017, 42, 309-318.	2.0	44

JONAS K OLOFSSON

#	Article	IF	CITATIONS
19	Human olfactory-auditory integration requires phase synchrony between sensory cortices. Nature Communications, 2019, 10, 1168.	12.8	34
20	APOE-É>4 effects on longitudinal decline in olfactory and non-olfactory cognitive abilities in middle-aged and old adults. Scientific Reports, 2017, 7, 1286.	3.3	33
21	Time to smell: a cascade model of human olfactory perception based on response-time (RT) measurement. Frontiers in Psychology, 2014, 5, 33.	2.1	32
22	Semantic Processing in Deaf and Hard-of-Hearing Children: Large N400 Mismatch Effects in Brain Responses, Despite Poor Semantic Ability. Frontiers in Psychology, 2016, 7, 1146.	2.1	32
23	The language of smell: Connecting linguistic and psychophysical properties of odor descriptors. Cognition, 2018, 178, 37-49.	2.2	29
24	Body odor disgust sensitivity is associated with prejudice towards a fictive group of immigrants. Physiology and Behavior, 2019, 201, 221-227.	2.1	29
25	Human hippocampal connectivity is stronger in olfaction than other sensory systems. Progress in Neurobiology, 2021, 201, 102027.	5.7	28
26	The Body Odor Disgust Scale (BODS): Development and Validation of a Novel Olfactory Disgust Assessment. Chemical Senses, 2017, 42, bjw107.	2.0	26
27	Thought for food: Cognitive influences on chemosensory perceptions and preferences. Food Quality and Preference, 2020, 79, 103776.	4.6	26
28	People with higher interoceptive sensitivity are more altruistic, but improving interoception does not increase altruism. Scientific Reports, 2017, 7, 15652.	3.3	24
29	Body odour disgust sensitivity predicts authoritarian attitudes. Royal Society Open Science, 2018, 5, 171091.	2.4	24
30	A Prospective Study on Risk Factors for Olfactory Dysfunction in Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 603-610.	3.6	24
31	Laterality of the Olfactory Event-Related Potential Response. Chemical Senses, 2006, 31, 699-704.	2.0	23
32	Olfactory and chemosomatosensory function in pregnant women assessed with event-related potentials. Physiology and Behavior, 2005, 86, 252-257.	2.1	22
33	Background Odors Modulate N170 ERP Component and Perception of Emotional Facial Stimuli. Frontiers in Psychology, 2018, 9, 1000.	2.1	22
34	Olfaction and Aging: A Review of the Current State of Research and Future Directions. I-Perception, 2021, 12, 204166952110203.	1.4	22
35	Sniff Your Way to Clarity: The Case of Olfactory Imagery. Chemosensory Perception, 2008, 1, 242-246.	1.2	20
36	Body Odor Trait Disgust Sensitivity Predicts Perception of Sweat Biosamples. Chemical Senses, 2017, 42, 479-485.	2.0	20

JONAS K OLOFSSON

#	Article	IF	CITATIONS
37	Beyond Smell-O-Vision: Possibilities for Smell-Based Digital Media. Simulation and Gaming, 2017, 48, 455-479.	1.9	20
38	Do Valenced Odors and Trait Body Odor Disgust Affect Evaluation of Emotion in Dynamic Faces?. Perception, 2017, 46, 1412-1426.	1.2	19
39	Smell-Based Memory Training: Evidence of Olfactory Learning and Transfer to the Visual Domain. Chemical Senses, 2020, 45, 593-600.	2.0	19
40	Subjective Olfactory Loss in Older Adults Concurs with Long-Term Odor Identification Decline. Chemical Senses, 2019, 44, 105-112.	2.0	16
41	Human Apolipoprotein E Genotype Differentially Affects Olfactory Behavior and Sensory Physiology in Mice. Neuroscience, 2018, 380, 103-110.	2.3	15
42	A Handheld Olfactory Display For Smell-Enabled VR Games. , 2019, , .		15
43	Interaction Between Odor Identification Deficit and APOE4 Predicts 6-Year Cognitive Decline in Elderly Individuals. Behavior Genetics, 2020, 50, 3-13.	2.1	15
44	Comparison of chemosensory, auditory and visual event-related potential amplitudes. Scandinavian Journal of Psychology, 2008, 49, 231-237.	1.5	14
45	Putting action memory to the test: testing affects subsequent restudy but not long-term forgetting of action events. Journal of Cognitive Psychology, 2016, 28, 209-219.	0.9	14
46	Neuroimaging of smell and taste. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 164, 263-282.	1.8	13
47	Body Odor Disgust Sensitivity Predicts Moral Harshness Toward Moral Violations of Purity. Frontiers in Psychology, 2019, 10, 458.	2.1	13
48	Olfactory Influences on Visual Categorization: Behavioral and ERP Evidence. Cerebral Cortex, 2020, 30, 4220-4237.	2.9	13
49	Human Olfaction: It Takes Two Villages. Current Biology, 2018, 28, R108-R110.	3.9	11
50	Achieving Olfactory Expertise: Training for Transfer in Odor Identification. Chemical Senses, 2019, 44, 197-203.	2.0	11
51	Response to Majid: Neurocognitive and Cultural Approaches to Odor Naming are Complementary. Trends in Cognitive Sciences, 2015, 19, 630-631.	7.8	9
52	Background odors affect behavior in a dot-probe task with emotionally expressive faces. Physiology and Behavior, 2019, 210, 112540.	2.1	9
53	A Review of the Effects of Valenced Odors on Face Perception and Evaluation. I-Perception, 2021, 12, 204166952110095.	1.4	9
54	Odor Identification in Rats: Behavioral and Electrophysiological Evidence of Learned Olfactory-Auditory Associations. ENeuro, 2019, 6, ENEURO.0102-19.2019.	1.9	9

JONAS K OLOFSSON

#	Article	IF	CITATIONS
55	Duality of Smell: Route-Dependent Effects on Olfactory Perception and Language. Chemical Senses, 2021, 46, .	2.0	8
56	Olfactory Language: Context Is Everything. Trends in Cognitive Sciences, 2021, 25, 419-420.	7.8	7
57	Effects of oxazepam on affective perception, recognition, and event-related potentials. Psychopharmacology, 2011, 215, 301-309.	3.1	5
58	Effects of testing on subsequent reâ€encoding and longâ€term forgetting ofÂactionâ€relevant materials: On the influence of recall type. Scandinavian Journal of Psychology, 2015, 56, 475-481.	1.5	5
59	Effects of Task Demands on Olfactory, Auditory, and Visual Event-Related Potentials Suggest Similar Top-Down Modulation Across Senses. Chemical Senses, 2018, 43, 129-134.	2.0	5
60	An Overprotective Nose? Implicit Bias Is Positively Related to Individual Differences in Body Odor Disgust Sensitivity. Frontiers in Psychology, 2020, 11, 301.	2.1	5
61	Joint trajectories of episodic memory and odor identification in older adults: patterns and predictors. Aging, 2021, 13, 17080-17096.	3.1	5
62	"Fast―versus "slow―word integration of visual and olfactory objects: EEG biomarkers of decision speed variability Behavioral Neuroscience, 2018, 132, 587-594.	1.2	5
63	A Method for Computerized Olfactory Assessment and Training Outside of Laboratory or Clinical Settings. I-Perception, 2021, 12, 204166952110239.	1.4	1
64	Twenty Shades of Chemosensory Perception. Perception, 2017, 46, 241-244.	1.2	0