
Subramania Angaiah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2804562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 2018, 140, 696-733.	10.3	574
2	<i>In situ</i> grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale, 2018, 10, 20414-20425.	5.6	332
3	Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. European Polymer Journal, 2015, 66, 207-227.	5.4	245
4	2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chemical Engineering Journal, 2019, 355, 881-890.	12.7	209
5	Progress on the Photocatalytic Reduction Removal of Chromium Contamination. Chemical Record, 2019, 19, 873-882.	5.8	204
6	Development of Novel Acidizing Inhibitors for Carbon Steel Corrosion in 15% Boiling Hydrochloric Acid. Corrosion, 2008, 64, 541-552.	1.1	145
7	3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chemical Engineering Journal, 2020, 399, 125627.	12.7	140
8	Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochimica Acta, 2014, 149, 152-158.	5.2	134
9	High-Performance Quasi-Solid-State Dye-Sensitized Solar Cell Based on an Electrospun PVdFâ^'HFP Membrane Electrolyte. Langmuir, 2008, 24, 9816-9819.	3.5	129
10	Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. Journal of Membrane Science, 2007, 294, 8-15.	8.2	121
11	Hydrothermal assisted <i>in situ</i> growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Advances, 2017, 7, 5853-5862.	3.6	111
12	Sonochemical synthesis of a 2D–2D MoSe ₂ /graphene nanohybrid electrode material for asymmetric supercapacitors. Sustainable Energy and Fuels, 2019, 3, 467-477.	4.9	110
13	Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances, 2016, 6, 15451-15459.	3.6	105
14	Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells. Nanoscale, 2019, 11, 17579-17589.	5.6	99
15	Morphology restrained growth of V ₂ O ₅ by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chemical Communications, 2020, 56, 6412-6415.	4.1	95
16	Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. Journal of Power Sources, 2006, 153, 177-182.	7.8	93
17	Synthesis and Characterization of ZnNiIn Layered Double Hydroxides Derived Mixed Metal Oxides with Highly Efficient Photoelectrocatalytic Activities. Industrial & Engineering Chemistry Research, 2019, 58, 836-848.	3.7	91
18	Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 250-259.	6.2	90

#	Article	IF	CITATIONS
19	Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy and Environment, 2020, 5, 259-273.	8.7	89
20	In situ grown cobalt selenide/graphene nanocomposite counter electrodes for enhanced dye-sensitized solar cell performance. Journal of Materials Chemistry A, 2017, 5, 14583-14594.	10.3	84
21	A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochimica Acta, 2019, 312, 157-167.	5.2	83
22	Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. Journal of Colloid and Interface Science, 2019, 534, 459-468.	9.4	83
23	Electrodeposition and characterization of Cu-TiO2 nanocomposite coatings. Journal of Solid State Electrochemistry, 2009, 13, 1777-1783.	2.5	77
24	Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochimica Acta, 2007, 52, 4987-4993.	5.2	76
25	3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide for superior energy storage in ionic liquid. Electrochimica Acta, 2020, 334, 135546.	5.2	76
26	Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Scientific Reports, 2017, 7, 45390.	3.3	73
27	Microstructure of PVdF-co-HFP based electrolyte prepared by preferential polymer dissolution process. Journal of Membrane Science, 2007, 289, 1-6.	8.2	72
28	Development of 2D La(OH)3 /graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochimica Acta, 2018, 281, 329-337.	5.2	72
29	Facile synthesis of electrostatically anchored Nd(OH) ₃ nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. New Journal of Chemistry, 2018, 42, 2923-2932.	2.8	69
30	Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors. Applied Surface Science, 2020, 534, 147644.	6.1	68
31	High-performance dye-sensitized solar cell based on an electrospun poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /C 2015, 5, 52026-52032.)verlock 10 3.6	0 Tf 50 267 65
32	Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Applied Materials Today, 2016, 5, 33-40.	4.3	65
33	Electrospun Nd ³⁺ â€Ðoped LiMn ₂ O ₄ Nanofibers as Highâ€Performance Cathode Material for Liâ€Ion Capacitors. ChemElectroChem, 2017, 4, 2059-2067.	3.4	64
34	Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries. Journal of Solid State Electrochemistry, 2008, 12, 1135-1141.	2.5	62
35	Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. Journal of Membrane Science, 2007, 300, 104-110.	8.2	61
36	Polyaniline nanofibers by surfactantâ€assisted dilute polymerization for supercapacitor applications. Polymers for Advanced Technologies, 2008, 19, 725-727.	3.2	60

#	Article	IF	CITATIONS
37	Effect of PVA with various combustion fuels in sol–gel thermolysis process for the synthesis of LiMn2O4 nanoparticles for Li-ion batteries. Materials Chemistry and Physics, 2007, 102, 19-23.	4.0	55
38	High performance electrospun PVdFâ€HFP/SiO ₂ nanocomposite membrane electrolyte for Liâ€ion capacitors. Journal of Applied Polymer Science, 2017, 134, 45177.	2.6	53
39	Development of porous TiO2 nanofibers by solvosonication process for high performance quantum dot sensitized solar cell. Solar Energy Materials and Solar Cells, 2018, 179, 417-426.	6.2	53
40	New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics, 2006, 12, 175-178.	2.4	52
41	Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. Journal of Molecular Liquids, 2018, 261, 473-479.	4.9	52
42	Anti-bacterial and anti-biofilm properties of greenÂsynthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess and Biosystems Engineering, 2020, 43, 1649-1657.	3.4	52
43	Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires. Nanotechnology, 2007, 18, 225601.	2.6	51
44	Biologically reduced graphene oxide as a green and easily available photocatalyst for degradation of organic dyes. Environmental Research, 2021, 196, 110983.	7.5	51
45	Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties. Powder Technology, 2011, 205, 36-41.	4.2	48
46	Organic acid doped polythiophene nanoparticles as electrode material for redox supercapacitors. Polymers for Advanced Technologies, 2011, 22, 788-793.	3.2	46
47	Electrocatalytic cobalt–molybdenum alloy deposits. International Journal of Hydrogen Energy, 2007, 32, 2843-2847.	7.1	45
48	Influence of earth-abundant bimetallic (Fe–Ni) nanoparticle-embedded CNFs as a low-cost counter electrode material for dye-sensitized solar cells. RSC Advances, 2015, 5, 43611-43619.	3.6	44
49	Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics, 2018, 24, 4071-4080.	2.4	41
50	Development of a conjugated polyaniline incorporated electrospun poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock dyeâ€sensitized solar cells. Journal of Applied Polymer Science, 2015, 132, .	10 Tf 50 2 2.6	27 Td (fluori 40
51	Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process. Journal of Power Sources, 2005, 141, 188-192.	7.8	39
52	Electrospun TiC embedded CNFs as a low cost platinum-free counter electrode for dye-sensitized solar cell. Materials Research Bulletin, 2016, 75, 83-90.	5.2	38
53	Synthesis and electrochemical performance of P2-Na0.67AlxCo1-xO2 (0.0Ââ‰Â×Ââ‰ÂO.5) nanopowders for sodium-ion capacitors. Ionics, 2017, 23, 731-739.	2.4	38
54	A Facile Chemical Precipitation Method for the Synthesis of Nd(OH) ₃ and La(OH) ₃ Nanopowders and their Supercapacitor Performances. ChemistrySelect, 2018, 3, 12719-12724.	1.5	38

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Nanostructured Copper Zinc Tin Sulphide (CZTS) for Humidity Sensing Applications. IEEE Sensors Journal, 2019, 19, 2837-2846.	4.7	37
56	Synthesis of Polythiophene and its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Advanced Materials Research, 2014, 938, 151-157.	0.3	36
57	Synthesis of nano-crystalline (Ba0.5Sr0.5)Co0.8Fe0.2O3â~î^ cathode material by a novel sol–gel thermolysis process for IT-SOFCs. Journal of Power Sources, 2007, 165, 728-732.	7.8	35
58	Nanocrystalline LiMn2O4 thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery. Journal of Alloys and Compounds, 2010, 489, 674-677.	5.5	35
59	Microwave-assisted exfoliation method to develop platinum-decorated graphene nanosheets as a low cost counter electrode for dye-sensitized solar cells. RSC Advances, 2014, 4, 36226-36233.	3.6	35
60	Preparation and LPG-gas sensing characteristics of p-type semiconducting LaNbO4 ceramic material. Applied Surface Science, 2013, 283, 58-64.	6.1	34
61	Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Solar Energy, 2018, 171, 571-579.	6.1	34
62	Synthesis, sinterability and ionic conductivity of nanocrystalline Pr-doped La2Mo2O9 fast oxide-ion conductors. Journal of Power Sources, 2007, 167, 319-324.	7.8	33
63	Development of nanocrystalline CrNbO4 based p-type semiconducting gas sensor for LPG, ethanol and ammonia. Sensors and Actuators B: Chemical, 2012, 168, 165-171.	7.8	33
64	Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Advanced Composites and Hybrid Materials, 2022, 5, 2651-2674.	21.1	32
65	Synthesis of nanoparticles in microwave hydrolysis of Zr (IV) salt solutions—Ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of nanoparticles. Journal of Physics and Chemistry of Solids, 2007, 68, 264-271.	4.0	30
66	Spontaneous exfoliation and tailoring derived oxygen-riched porous carbon nanosheets for superior Li+ storage performance. Chemical Engineering Journal, 2020, 387, 124104.	12.7	30
67	Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li-ion batteries. Journal of Applied Polymer Science, 2005, 98, 1891-1896.	2.6	27
68	Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/triiodide redox electrolyte on the photovoltaic performance of DSSC. Ionics, 2013, 19, 1649-1653.	2.4	27
69	Electrodeposition and characterisation of Cu–MWCNTs nanocomposite coatings. Surface Engineering, 2017, 33, 369-374.	2.2	26
70	Development of MoSe2/PANI composite nanofibers as an alternative to Pt counter electrode to boost the photoconversion efficiency of dye sensitized solar cell. Journal of Solid State Electrochemistry, 2020, 24, 2289-2300.	2.5	24
71	Combustion synthesis of inverse spinel LiNiVO4 nano-particles using gelatine as the new fuel. Materials Letters, 2006, 60, 3023-3026.	2.6	23
72	Recent Progress in Grapheneâ€Based Microsupercapacitors. Energy Technology, 2021, 9, 2000844.	3.8	23

#	Article	IF	CITATIONS
73	Development of CeO2 nanorods reinforced electrodeposited nickel nanocomposite coating and its tribological and corrosion resistance properties. Journal of Rare Earths, 2018, 36, 1319-1325.	4.8	22
74	Electrodeposition and characterisation of Cu–CeO ₂ nanocomposite coatings. Surface Engineering, 2013, 29, 511-515.	2.2	21
75	Influence of PVP template on the formation of porous TiO2 nanofibers by electrospinning technique for dye-sensitized solar cell. Applied Physics A: Materials Science and Processing, 2015, 120, 1211-1218.	2.3	21
76	ZnSe quantum dots sensitized electrospun ZnO nanofibers as an efficient photoanode for improved performance of QDSSC. Materials Science in Semiconductor Processing, 2017, 64, 16-23.	4.0	21
77	Influence of Various Ionic Liquids Embedded Electrospun Polymer Membrane Electrolytes on the Photovoltaic Performance of DSSC. Engineered Science, 2018, , .	2.3	21
78	Aldimines – Effective Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Journal of Applied Electrochemistry, 2004, 34, 693-696.	2.9	20
79	Development of tungsten diselenide/polyaniline composite nanofibers as an efficient electrocatalytic counter electrode material for dye-sensitized solar cell. Solar Energy, 2020, 209, 538-546.	6.1	20
80	Bimetal (Ni–Co) nanoparticles-incorporated electrospun carbon nanofibers as an alternative counter electrode for dye-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	19
81	All-Solid-State Electrospun Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 432 Td (fluoride- <i>co Nanohybrid Membrane Electrolyte for High-Energy Li-Ion Capacitors. Journal of Physical Chemistry C, 2019, 123, 30145-30154.</i>)-hexaf 3.1	fluoropropyl <mark>er</mark> 19
82	Cu2AgInSe4 QDs sensitized electrospun porous TiO2 nanofibers as an efficient photoanode for quantum dot sensitized solar cells. Solar Energy, 2020, 199, 317-325.	6.1	19
83	Microwave-assisted combustion synthesis of nanocrystalline La2Mo2O9 oxide-ion conductor and its characterization. Journal of Solid State Electrochemistry, 2007, 12, 143-148.	2.5	18
84	A wide solar spectrum light harvesting Ag2Se quantum dot-sensitized porous TiO2 nanofibers as photoanode for high-performance QDSC. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	18
85	Influence of Polypyrrole Incorporated Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) Nanofibrous Composite Membrane Electrolyte on the Photovoltaic Performance of Dye Sensitized Solar Cell. Engineered Science, 2020, , .	2.3	18
86	Synthesis of nano-crystalline LiSrxMn2â^'xO4 powder by a novel sol–gel thermolysis process for Li-ion polymer battery. Journal of Power Sources, 2006, 158, 1410-1413.	7.8	17
87	Preparation and electrochemical behaviour of LiMn2O4 thin film by spray pyrolysis method. Thin Solid Films, 2008, 516, 8295-8298.	1.8	17
88	Effect of porosity on PVdF-co-HFP–PMMA-based electrolyte. Materials Chemistry and Physics, 2008, 110, 11-16.	4.0	17
89	Synthesis and characterization of InNbO4 nanopowder for gas sensors. Talanta, 2012, 88, 115-120.	5.5	17
90	Influence of pulse reverse current on mechanical and corrosion resistance properties of Ni-MoSe2 nanocomposite coatings. Applied Surface Science, 2019, 493, 225-230.	6.1	17

#	Article	IF	CITATIONS
91	Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2021, 882, 160704.	5.5	17
92	Influence of Al ₂ O ₃ nanoparticles embedded-TiO ₂ nanofibers based photoanodes on photovoltaic performance of a dye sensitized solar cell. RSC Advances, 2014, 4, 52871-52877.	3.6	16
93	A fast Li-ion conducting Li7.1La3Sr0.05Zr1.95O12 embedded electrospun PVDF-HFP nanohybrid membrane electrolyte for all-solid-state Li-ion capacitors. Materials Today Communications, 2020, 25, 101497.	1.9	16
94	Mesoporous Carbon/α-Fe ₂ O ₃ Nanoleaf Composites for Disposable Nitrite Sensors and Energy Storage Applications. ACS Omega, 2020, 5, 32160-32170.	3.5	16
95	Influence of a bifunctional linker on the loading of Cu ₂ AgInS ₄ QDs onto porous TiO ₂ NFs to use as an efficient photoanode to boost the photoconversion efficiency of QDSCs. New Journal of Chemistry, 2020, 44, 13148-13156.	2.8	16
96	Preparation of TiO2 paste using poly(vinylpyrrolidone) for dye sensitized solar cells. Thin Solid Films, 2012, 520, 7018-7021.	1.8	15
97	Selective ethanol gas sensing behavior of mesoporous n-type semiconducting FeNbO4 nanopowder obtained by niobium–citrate process. Current Applied Physics, 2014, 14, 439-446.	2.4	14
98	Mechanical and corrosion resistance properties of electrodeposited Cu–ZrO ₂ nanocomposites. Transactions of the Institute of Metal Finishing, 2015, 93, 262-266.	1.3	14
99	Microwave-assisted combustion synthesis of nanocrystalline Sm-doped La 2 Mo 2 O 9 oxide-ion conductors for SOFC application. Materials Research Bulletin, 2015, 68, 320-325.	5.2	14
100	Influence of pulse reverse current parameters on electrodeposition of copper-graphene nanocomposite coating. Applied Surface Science Advances, 2021, 5, 100116.	6.8	14
101	Preparation, characterization, and evaluation of LiNi0.4Co0.6O2 nanofibers for supercapacitor applications. Journal of Solid State Electrochemistry, 2014, 18, 2387-2392.	2.5	13
102	Development of wide band gap sensor based on AlNbO4 nanopowder for ethanol. Journal of Alloys and Compounds, 2012, 526, 110-115.	5.5	12
103	Polyol thermolysis synthesis of TiO2 nanoparticles and its paste formulation to fabricate photoanode for dye-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2015, 119, 497-502.	2.3	12
104	Assisted combustion synthesis and characterization of Pr 0.6 Sr 0.4 MnO 3±δ nano crystalline powder as cathode material for IT-SOFC. Ceramics International, 2017, 43, 988-991.	4.8	12
105	Facile synthesis of reduced graphene oxide using Acalypha indica and Raphanus sativus extracts and their in vitro cytotoxicity activity against human breast (MCF-7) and lung (A549) cancer cell lines. 3 Biotech, 2021, 11, 157.	2.2	12
106	Hydrothermally Synthesized Li ₄ Ti ₅ O ₁₂ Nanotubes Anode Material with Enhanced Li-Ion Battery Performances. Journal of Nanoscience and Nanotechnology, 2019, 19, 7387-7391.	0.9	11
107	Designing Na ₂ Zn ₂ TeO ₆ -Embedded 3D-Nanofibrous Poly(vinylidenefluoride)- <i>co</i> -hexafluoropropylene-Based Nanohybrid Electrolyte via Electrospinning for Durable Sodium-Ion Capacitors. ACS Applied Energy Materials, 2021, 4, 8475-8487.	5.1	11
108	Diethylamine phosphate as VPI for steel components. Materials Chemistry and Physics, 2006, 100, 193-197.	4.0	10

#	Article	IF	CITATIONS
109	Effect of 1â€butylâ€3â€methylimidazolium iodide containing electrospun poly(vinylidene) Tj ETQq1 1 0.784314 r dyeâ€sensitized solar cells. Journal of Applied Polymer Science, 2015, 132, .	gBT /Ove 2.6	erlock 10 Tf 10
110	Synthesis and characterization of nanocrystalline La2Mo2O9 fast oxide-ion conductor by an in-situ polymerization method. Materials Research Bulletin, 2008, 43, 1153-1159.	5.2	9
111	The influence of benzoyl hydrazine and some of its substituents on corrosion inhibition of carbon steel in sulphuric acid solution. Anti-Corrosion Methods and Materials, 2004, 51, 414-419.	1.5	8
112	Synthesis and characterization of nanocrystalline La2Mo2O9 oxide-ion conductor by a novel polyaspartate precursor method. Journal of Alloys and Compounds, 2008, 456, 234-238.	5.5	8
113	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mrow> < mml:mtext>CeO· mathvariant="bold">2 < /mml:mrow> < /mml:math>-< mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:msub> < mml:mtext>LiClO < /mml:mtext> < mml:mn mathvariant="bold">4 -Based Composite Microporous Membrane	2.4	text>8
114	<i>In-Situ</i> Growth of CoS Nanoparticles Onto Electrospun Graphitized Carbon Nanofibers as an Efficient Counter Electrode for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 398-404.	0.9	8
115	Enhanced Electrochemical Performance of Cu2+ doped TiO2 Nanoparticles for Lithium-ion Battery. ES Materials & Manufacturing, 2018, , .	1.9	8
116	Synthesis and characterization of LiMgyMn2-yO4 cathode materials by a modified Pechini process for lithium batteries. Bulletin of Materials Science, 2005, 28, 663-667.	1.7	7
117	Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries. Ionics, 2007, 13, 61-65.	2.4	7
118	One-pot electrochemical preparation of copper species immobilized poly(o-aminophenol)/MWCNT composite with excellent electrocatalytic activity for use as an H ₂ O ₂ sensor. Inorganic Chemistry Frontiers, 2017, 4, 1356-1364.	6.0	7
119	<pre><scp> Cu ₂ AgInS ₂ Se ₂ </scp> quantum dots sensitized porous <scp> TiO ₂ </scp> nanofibers as a photoanode for highâ€performance quantum dot sensitized solar cell. International Journal of Energy Research, 2021, 45, 13563-13574.</pre>	4.5	7
120	Cobalt selenide decorated polyaniline composite nanofibers as a newer counter electrode for dyeâ€sensitized solar cell. Polymers for Advanced Technologies, 2021, 32, 3137-3149.	3.2	7
121	Synthesis of double perovskite LaMgCo2O5.5 nanopowder and its robust electrical humidity sensing behavior. Ceramics International, 2022, 48, 14518-14527.	4.8	7
122	Progress in Spinel‣tructured Cobaltiteâ€Based Positive Electrode Materials for Supercapacitors. ChemistrySelect, 2022, 7, .	1.5	7
123	Preparation of nanoparticle size LiBiO2 by combustion method and its electrochemical studies for lithium secondary cells. Pramana - Journal of Physics, 2005, 65, 973-980.	1.8	5
124	The hole transporting behaviour of Cu ₂ AgInS ₄ and Cu ₂ AgInSe ₄ for a carbon electrode-based perovskite solar cell. New Journal of Chemistry, 2021, 45, 423-430.	2.8	5
125	Preparation of compact TiO2 thin film by artist spray gun-assisted pyrolysis method for lead-free perovskite solar cell. Journal of Materials Science: Materials in Electronics, 2021, 32, 10412-10423.	2.2	5
126	Green synthesis of reduced graphene oxide using Plectranthus amboinicus leaf extract and its supercapacitive performance. Bulletin of Materials Science, 2022, 45, 1.	1.7	4

SUBRAMANIA ANGAIAH

#	Article	IF	CITATIONS
127	Polymer supported electrospun nanofibers with supramolecular materials for biological applications – a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1042-1058.	3.4	4
128	A novel polyaspartate precursor method for the synthesis of LiCayMn2â^'yO4nanoparticles for Li-ion batteries. Nanotechnology, 2007, 18, 065603.	2.6	3
129	A new approach to synthesize LiAsF6 and other lithium based fluorochemicals for rechargeable lithium cells. Ionics, 2005, 11, 198-201.	2.4	2
130	Synthesis of Nanocrystalline LiCdxMn2â€xO4Cathode Materials by Using a New Combustion Fuel for Liâ€ion Polymer Battery. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2006, 36, 203-207.	0.6	2
131	High Performance Electrospun PVdF-HFP/MMT Nanofibrous Composite Membrane Electrolyte for Li-Ion Capacitors. Nano Hybrids and Composites, 0, 14, 1-15.	0.8	2
132	A one-step procedure to prepare LiAsF6 and other allied lithium-based fluoro compounds used as electrolyte in lithium cells. Ionics, 2006, 12, 327-329.	2.4	1
133	Alternating-current impedance and chronoamperometry studies of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /C prepared by a phase-inversion technique. Journal of Applied Polymer Science, 2007, 105, 2830-2836.	Verlock 10 2.6	D Tf 50 507 T 1
134	Fabrication of a hole transporting Cu2AgIn(S0.5Se0.5)4 nanoparticles deposited carbon counter electrode for perovskite solar cell. Materials Science in Semiconductor Processing, 2022, 147, 106686.	4.0	1
135	Preparation and Piezoelectric Properties of Lead Zirconate Titanate Ceramics. Ferroelectrics, 2005, 325, 43-48.	0.6	0
136	Preparation and Piezoelectric Properties of Lead Zirconate Titanate Ceramics. Ferroelectrics, 2006, 332, 77-82.	0.6	0
137	Development of LiCr <inf>0.15</inf> Co <inf>0.85</inf> O <inf>2</inf> nanowires by electrospinning method as a cathode for asymmetric supercapacitors. , 2013, , .		0

138 Electrolytes for lithium–sulfur batteries. , 2022, , 179-203.

0