
Frederic P A Jorand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2803432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical and structural (2D) linkage between bacteria within activated sludge flocs. Water Research, 1995, 29, 1639-1647.	5.3	276
2	Iron(II,III) Hydroxycarbonate Green Rust Formation and Stabilization from Lepidocrocite Bioreduction. Environmental Science & Technology, 2002, 36, 16-20.	4.6	174
3	Surface Structure and Nanomechanical Properties of Shewanella putrefaciens Bacteria at Two pH values (4 and 10) Determined by Atomic Force Microscopy. Journal of Bacteriology, 2005, 187, 3864-3868.	1.0	116
4	Abiotic Process for Fe(II) Oxidation and Green Rust Mineralization Driven by a Heterotrophic Nitrate Reducing Bacteria (<i>Klebsiella mobilis</i>). Environmental Science & Technology, 2014, 48, 3742-3751.	4.6	71
5	Formation of Hydroxysulphate Green Rust 2 as a Single Iron(II-III) Mineral in Microbial Culture. Geomicrobiology Journal, 2005, 22, 389-399.	1.0	58
6	Probing Surface Structures of Shewanella spp. by Microelectrophoresis. Biophysical Journal, 2006, 90, 2612-2621.	0.2	48
7	Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite. Geobiology, 2010, 8, 209-222.	1.1	44
8	Kinetic and Thermodynamic Analysis During Dissimilatory γ-FeOOH Reduction: Formation of Green Rust 1 and Magnetite. Geomicrobiology Journal, 2007, 24, 51-64.	1.0	42
9	Multiscale dynamics of the cell envelope of Shewanella putrefaciens as a response to pH change. Colloids and Surfaces B: Biointerfaces, 2006, 52, 108-116.	2.5	41
10	Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity. Geochimica Et Cosmochimica Acta, 2007, 71, 5450-5462.	1.6	41
11	Competitive Formation of Hydroxycarbonate Green Rust 1 versus Hydroxysulphate Green Rust 2 inShewanella putrefaciensCultures. Geomicrobiology Journal, 2004, 21, 79-90.	1.0	40
12	Bioreduction of ferric species and biogenesis of green rusts in soils. Comptes Rendus - Geoscience, 2006, 338, 447-455.	0.4	39
13	Advantage Provided by Iron for Escherichia coli Growth and Cultivability in Drinking Water. Applied and Environmental Microbiology, 2005, 71, 5621-5623.	1.4	37
14	Magnetite as a precursor for green rust through the hydrogenotrophic activity of the ironâ€reducing bacteria <i>Shewanella putrefaciens</i> . Geobiology, 2016, 14, 237-254.	1.1	32
15	Effects of Si-bearing minerals on the nature of secondary iron mineral products from lepidocrocite bioreduction. Chemical Geology, 2011, 289, 86-97.	1.4	26
16	Growth dynamic of Naegleria fowleri in a microbial freshwater biofilm. Water Research, 2012, 46, 3958-3966.	5.3	26
17	Electrochemically assisted bacteria encapsulation in thin hybrid sol–gel films. Journal of Materials Chemistry B, 2013, 1, 1052.	2.9	26
18	Characterization of Extracellular Polymeric Substances in Rotating Biological Contactors and Activated Sludge Flocs. Environmental Technology (United Kingdom), 2001, 22, 951-959.	1.2	21

Frederic P A Jorand

#	Article	IF	CITATIONS
19	Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C15H15N3O2: Effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial) Tj ETQq1	1 0. 78431	4 ₂gBT /Ove
20	The formation of green rust induced by tropical river biofilm components. Science of the Total Environment, 2011, 409, 2586-2596.	3.9	20
21	Reduction of ferric green rust by Shewanella putrefaciens. Letters in Applied Microbiology, 2007, 45, 515-521.	1.0	19
22	Sol–gel based â€~artificial' biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator. Electrochemistry Communications, 2014, 38, 71-74.	2.3	19
23	Contribution of Anionic vs. Neutral Polymers to the Formation of Green Rust 1 from Î ³ -FeOOH Bioreduction. Geomicrobiology Journal, 2013, 30, 600-615.	1.0	16
24	A rapid and simple protocol to prepare a living biocomposite that mimics electroactive biofilms. Bioelectrochemistry, 2017, 118, 131-138.	2.4	14
25	Biocidal efficacy of monochloramine against planktonic and biofilm-associated <i>Naegleria fowleri</i> cells. Journal of Applied Microbiology, 2014, 116, 1055-1065.	1.4	10
26	Evaluation of a biofilm formation by <i>Desulfovibrio fairfieldensis</i> on titanium implants. Letters in Applied Microbiology, 2015, 60, 279-287.	1.0	10
27	Remineralization of ferrous carbonate from bioreduction of natural goethite in the Lorraine iron ore (Minette) by Shewanella putrefaciens. Chemical Geology, 2015, 412, 48-58.	1.4	10
28	Design of a rotating disk reactor to assess the colonization of biofilms by free-living amoebae under high shear rates. Biofouling, 2018, 34, 368-377.	0.8	9
29	Iron uptake is essential for Escherichia coli survival in drinking water. Letters in Applied Microbiology, 2006, 43, 111-117.	1.0	7
30	Abiotically or microbially mediated transformations of magnetite by sulphide species: The unforeseen role of nitrate-reducing bacteria. Corrosion Science, 2018, 142, 31-44.	3.0	7
31	Assessment of an anti-scale low-frequency electromagnetic field device on drinking water biofilms. Biofouling, 2018, 34, 1020-1031.	0.8	5
32	Electrochemical analysis of a microbial electrochemical snorkel in laboratory and constructed wetlands. Bioelectrochemistry, 2021, 142, 107895.	2.4	5
33	Influence of cytochrome charge and potential on the cathodic current of electroactive artificial biofilms. Bioelectrochemistry, 2018, 124, 185-194.	2.4	3
34	Protamine Promotes Direct Electron Transfer BetweenShewanella oneidensisCells and Carbon Nanomaterials in Bacterial Biocomposites. ChemElectroChem, 2019, 6, 2398-2406.	1.7	3
35	Influence Of Lepidocrocite (γ-FeOOH) on <i>Escherichia Coli</i> Cultivability in Drinking Water. Environmental Technology (United Kingdom), 2005, 26, 211-218.	1.2	2
36	Protamine Promotes Direct Electron Transfer Between <i>Shewanella Oneidensis</i> Cells and Carbon Nanomaterials in Bacterial Biocomposites. ChemElectroChem, 2019, 6, 2349-2349.	1.7	1

#	Article	IF	CITATIONS
37	Fuzzy Limit Between Green Rust and Goethite Biomineralization from a Nitrate-Reducing Bacterium (Klebsiella mobilis): The Influence of Organic Electron Donors. Current Inorganic Chemistry, 2016, 6, 119-126.	0.2	1
38	Renforcement des propriétés mécaniques d'un minerai de fer par bioréduction microbienne. Materia Et Techniques, 2016, 104, 510.	^{IUX} 0.3	1
39	Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria. Hyperfine Interactions, 2006, 167, 723-727.	0.2	0