Gail Bornhorst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2803146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and characterization of standardized model, solid foods with varying breakdown rates during gastric digestion. Journal of Food Engineering, 2022, 316, 110827.	2.7	5
2	Starch and protein hydrolysis in cooked quinoa (<i>Chenopodium quinoa</i> Willd.) during static and dynamic <i>in vitro</i> oral and gastric digestion. Food and Function, 2022, 13, 920-932.	2.1	7
3	End-to-end prediction of uniaxial compression profiles of apples during in vitro digestion using time-series micro-computed tomography and deep learning. Journal of Food Engineering, 2022, 325, 111014.	2.7	3
4	Contribution of the proximal and distal gastric phases to the breakdown of cooked starch-rich solid foods during static in vitro gastric digestion. Food Research International, 2022, 157, 111270.	2.9	8
5	Carbohydrate Digestion: The importance of the proximal and distal stomach during digestion in growing pigs. Animal Science Proceedings, 2022, 13, 127-132.	0.0	2
6	Influence of food macrostructure on the kinetics of acidification in the pig stomach after the consumption of rice- and wheat-based foods: Implications for starch hydrolysis and starch emptying rate. Food Chemistry, 2022, 394, 133410.	4.2	6
7	Inflammatory Effects of Thickened Water on the Lungs in a Murine Model of Recurrent Aspiration. Laryngoscope, 2021, 131, 1223-1228.	1.1	11
8	Food buffering capacity: quantification methods and its importance in digestion and health. Food and Function, 2021, 12, 543-563.	2.1	27
9	Structural breakdown of starchâ€based foods during gastric digestion and its link to glycemic response: <i>In vivo</i> and <i>in vitro</i> considerations. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2660-2698.	5.9	32
10	Characterization of raft-forming alginate suspensions formed in HCl or model food systems at varying pH levels to better simulate gastric postprandial conditions. Drug Development and Industrial Pharmacy, 2021, , 1-11.	0.9	0
11	Breakdown mechanisms of whey protein gels during dynamic <i>in vitro</i> gastric digestion. Food and Function, 2021, 12, 2112-2125.	2.1	17
12	Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model. Food and Function, 2021, 12, 4349-4372.	2.1	20
13	Gastric secretion rate and protein concentration impact intragastric pH and protein hydrolysis during dynamic in vitro gastric digestion. Food Hydrocolloids for Health, 2021, 1, 100027.	1.6	10
14	Fate of Phytometabolites of Antibiotics during <i>In Vitro</i> Digestion and Implications for Human Health. Journal of Agricultural and Food Chemistry, 2021, 69, 12598-12607.	2.4	2
15	Nondestructive characterization of structural changes during in vitro gastric digestion of apples using 3D time-series micro-computed tomography. Journal of Food Engineering, 2020, 267, 109692.	2.7	11
16	Characterization of individual particle movement during in vitro gastric digestion in the Human Gastric Simulator (HGS). Journal of Food Engineering, 2020, 264, 109674.	2.7	28
17	Pearl millet (<i>Pennisetum glaucum</i>) couscous breaks down faster than wheat couscous in the Human Gastric Simulator, though has slower starch hydrolysis. Food and Function, 2020, 11, 111-122.	2.1	22
18	Interactions between whey proteins and cranberry juice after thermal or non-thermal processing during <i>in vitro </i>) gastrointestinal digestion. Food and Function, 2020, 11, 7661-7680.	2.1	7

GAIL BORNHORST

#	Article	IF	CITATIONS
19	Buffering capacity of commercially available foods is influenced by composition and initial properties in the context of gastric digestion. Food and Function, 2020, 11, 2255-2267.	2.1	35
20	Acid and Moisture Uptake into Red Beets during in Vitro Gastric Digestion as Influenced by Gastric pH. Food Biophysics, 2020, 15, 261-272.	1.4	7
21	Assessing the Fate and Bioavailability of Glucosinolates in Kale (<i>Brassica oleracea</i>) Using Simulated Human Digestion and Caco-2 Cell Uptake Models. Journal of Agricultural and Food Chemistry, 2019, 67, 9492-9500.	2.4	19
22	Fatty acid bioaccessibility and structural breakdown from <i>in vitro</i> digestion of almond particles. Food and Function, 2019, 10, 5174-5187.	2.1	28
23	Fracture properties of foods: Experimental considerations and applications to mastication. Journal of Food Engineering, 2019, 263, 213-226.	2.7	24
24	Interlaboratory Measurement of Rheological Properties of Tomato Salad Dressing. Journal of Food Science, 2019, 84, 3204-3212.	1.5	7
25	Buffering capacity of protein-based model food systems in the context of gastric digestion. Food and Function, 2019, 10, 6074-6087.	2.1	55
26	Future Perspectives and Opportunities for Interdisciplinary Research on Food Digestion. , 2019, , 339-347.		0
27	Chemical and structural characteristics of frankfurters during inÂvitro gastric digestion as influenced by cooking method and severity. Journal of Food Engineering, 2018, 229, 102-108.	2.7	7
28	Protein Digestion of Baby Foods: Study Approaches and Implications for Infant Health. Molecular Nutrition and Food Research, 2018, 62, 1700231.	1.5	63
29	Modeling the softening of carbohydrate-based foods during simulated gastric digestion. Journal of Food Engineering, 2018, 222, 38-48.	2.7	32
30	Gastric Mixing During Food Digestion: Mechanisms and Applications. Annual Review of Food Science and Technology, 2017, 8, 523-542.	5.1	42
31	Freshâ€Squeezed Orange Juice Properties Before and During <i>In Vitro</i> Digestion as Influenced by Orange Variety and Processing Method. Journal of Food Science, 2017, 82, 2438-2447.	1.5	20
32	Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chemistry, 2017, 215, 7-16.	4.2	65
33	Gastric protein hydrolysis of raw and roasted almonds in the growing pig. Food Chemistry, 2016, 211, 502-508.	4.2	15
34	Food processing and structure impact the metabolizable energy of almonds. Food and Function, 2016, 7, 4231-4238.	2.1	52
35	Mass transport processes in orange-fleshed sweet potatoes leading to structural changes during inÂvitro gastric digestion. Journal of Food Engineering, 2016, 191, 48-57.	2.7	27
36	Engineering Digestion: Multiscale Processes of Food Digestion. Journal of Food Science, 2016, 81, R534-43.	1.5	73

GAIL BORNHORST

#	Article	lF	CITATIONS
37	Acid and moisture uptake in steamed and boiled sweet potatoes and associated structural changes during in vitro gastric digestion. Food Research International, 2016, 88, 247-255.	2.9	30
38	A Proposed Food Breakdown Classification System to Predict Food Behavior during Gastric Digestion. Journal of Food Science, 2015, 80, R924-34.	1.5	45
39	Acid Diffusion into Rice Boluses is Influenced by Rice Type, Variety, and Presence of αâ€Amylase. Journal of Food Science, 2015, 80, E316-25.	1.5	41
40	Rice bolus texture changes due to $\hat{1}\pm$ -amylase. LWT - Food Science and Technology, 2014, 55, 27-33.	2.5	33
41	Physical Property Changes in Raw and Roasted Almonds during Gastric Digestion In vivo and In vitro. Food Biophysics, 2014, 9, 39-48.	1.4	27
42	Gastric pH Distribution and Mixing of Soft and Rigid Food Particles in the Stomach using a Dual-Marker Technique. Food Biophysics, 2014, 9, 292-300.	1.4	59
43	Gastric Digestion In Vivo and In Vitro: How the Structural Aspects of Food Influence the Digestion Process. Annual Review of Food Science and Technology, 2014, 5, 111-132.	5.1	155
44	Particle Size Distribution of Brown and White Rice during Gastric Digestion Measured by Image Analysis. Journal of Food Science, 2013, 78, E1383-91.	1.5	45
45	Rheological Properties and Textural Attributes of Cooked Brown and White Rice During Gastric Digestion in Vivo. Food Biophysics, 2013, 8, 137-150.	1.4	42
46	Properties of Gastric Chyme from Pigs Fed Cooked Brown or White Rice. Food Biophysics, 2013, 8, 12-23.	1.4	30
47	Kinetics of in Vitro Bread Bolus Digestion with Varying Oral and Gastric Digestion Parameters. Food Biophysics, 2013, 8, 50-59.	1.4	77
48	Gastric emptying rate and chyme characteristics for cooked brown and white rice meals <i>in vivo</i> . Journal of the Science of Food and Agriculture, 2013, 93, 2900-2908.	1.7	66
49	Gastric Digestion of Raw and Roasted Almonds <i>In Vivo</i> . Journal of Food Science, 2013, 78, H1807-13.	1.5	19
50	Bolus Formation and Disintegration during Digestion of Food Carbohydrates. Comprehensive Reviews in Food Science and Food Safety, 2012, 11, 101-118.	5.9	112