
Thiyagu Subramani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2803115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficiency enhancement of Si nanostructure hybrid solar cells by optimizing non-radiative energy transfer from Si quantum dots. Nano Energy, 2021, 82, 105728.	16.0	22
2	Conversion of Amorphous Carbon on Silicon Nanostructures into Similar Shaped Semi-Crystalline Graphene Sheets. Journal of Nanoscience and Nanotechnology, 2021, 21, 4949-4954.	0.9	1
3	Surface-Enhanced Raman Spectroscopy (SERS) of Neonicotinoid Insecticide Thiacloprid Assisted by Silver and Gold Nanostructures. Applied Spectroscopy, 2020, 74, 357-364.	2.2	10
4	Surface-enhanced Raman spectroscopy of neonicotinoid insecticide imidacloprid, assisted by gold and silver nanostructures. Spectroscopy Letters, 2020, 53, 184-193.	1.0	5
5	Solar Cell Based on Hybrid Structural SiNW/Poly(3,4 ethylenedioxythiophene): Poly(styrenesulfonate)/Graphene. Global Challenges, 2020, 4, 2000010.	3.6	17
6	Hybrid organic and inorganic solar cell based on a cyanine dye and quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 166-174.	3.9	18
7	Highly Air-Stable Solution-Processed and Low-Temperature Organic/Inorganic Nanostructure Hybrid Solar Cells. ACS Applied Energy Materials, 2019, 2, 2637-2644.	5.1	18
8	Three-dimensional radial junction solar cell based on ordered silicon nanowires. Nanotechnology, 2019, 30, 344001.	2.6	10
9	Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. Bulletin of the Chemical Society of Japan, 2019, 92, 521-528.	3.2	88
10	Surface-Enhanced Raman Spectroscopy (SERS) of Mancozeb and Thiamethoxam Assisted by Gold and Silver Nanostructures Produced by Laser Techniques on Paper. Applied Spectroscopy, 2019, 73, 313-319.	2.2	13
11	BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. Journal of Solid State Chemistry, 2019, 269, 409-418.	2.9	45
12	Fabrication of high-performance ordered radial junction silicon nanopencil solar cells by fine-tuning surface carrier recombination and structure morphology. Nano Energy, 2019, 56, 604-611.	16.0	13
13	Vanadium sulfide/reduced graphene oxide composite with enhanced supercapacitance performance. Journal of the Taiwan Institute of Chemical Engineers, 2018, 92, 72-79.	5.3	33
14	Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes. Applied Surface Science, 2018, 439, 1057-1064.	6.1	10
15	Hierarchical Flower Structured Bi2S3/Reduced Graphene Oxide Nanocomposite for High Electrochemical Performance. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 73-83.	3.7	26
16	SERS analyses of thiamethoxam assisted by Ag films and nanostructures produced by laser techniques. Journal of Raman Spectroscopy, 2018, 49, 397-403.	2.5	15
17	Hole gas accumulation in Si/Ge core–shell and Si/Ge/Si core–double shell nanowires. Nanoscale, 2018, 10, 21062-21068.	5.6	15
18	Control of grain size and crystallinity of poly-Si films on quartz by Al-induced crystallization. CrystEngComm, 2017, 19, 2305-2311.	2.6	23

Thiyagu Subramani

#	Article	IF	CITATIONS
19	High-efficiency silicon hybrid solar cells employing nanocrystalline Si quantum dots and Si nanotips for energy management. Nano Energy, 2017, 35, 154-160.	16.0	49
20	Functionalization of Silicon Nanostructures for Energyâ€Related Applications. Small, 2017, 13, 1701713.	10.0	49
21	Energy Storage: Functionalization of Silicon Nanostructures for Energyâ€Related Applications (Small) Tj ETQq1 I	0,784314 10.0	4 rgBT /Overle
22	Diffused back surface field formation in combination with two-step H ₂ annealing for improvement of silicon nanowire-based solar cell efficiency. Japanese Journal of Applied Physics, 2017, 56, 04CP01.	1.5	14
23	Improvement of silicon nanowire solar cells made by metal catalyzed electroless etching and nano imprint lithography. Japanese Journal of Applied Physics, 2017, 56, 04CP03.	1.5	5
24	Pencil-shaped silicon nanowire synthesis and photovoltaic application. Japanese Journal of Applied Physics, 2017, 56, 085201.	1.5	12
25	Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells. RSC Advances, 2016, 6, 12374-12381.	3.6	21
26	Low-Pressure-Assisted Coating Method To Improve Interface between PEDOT:PSS and Silicon Nanotips for High-Efficiency Organic/Inorganic Hybrid Solar Cells via Solution Process. ACS Applied Materials & Interfaces, 2016, 8, 2406-2415.	8.0	42
27	Thorough organic/Si nanostructure heterojunction provided by surfactant assisted PEDOT:PSS. , 2015, , .		0
28	Fabrication of silicon nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-graphene oxide hybrid solar cells. Journal of Applied Physics, 2015, 117, .	2.5	13
29	ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells. Nanoscale, 2014, 6, 466-471.	5.6	14
30	Silicon nanowire/organic hybrid solar cells with zonyl fluorosurfactanct treated PEDOT:PSS. , 2014, , .		1
31	Hybrid organic–inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface. Nanoscale, 2014, 6, 3361.	5.6	79
32	"Electrical annealing―effect in bulk heterojunction polymer solar cells. Thin Solid Films, 2013, 529, 54-57.	1.8	7
33	Significance of the ZnO nanorod array morphology for low-bandgap polymer solar cells in inverted structures. Journal of Materials Chemistry A, 2013, 1, 14641.	10.3	14
34	Influences of silicon nanowire morphology on its electroâ€optical properties and applications for hybrid solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 1400-1410.	8.1	27
35	Morphology dependence of silicon nanostructure/organic polymer solar cell. , 2013, , .		1
36	Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Research, 2011, 4, 1136-1143.	10.4	50

#	Article	IF	CITATIONS
37	Ultra high-density silicon nanowires for extremely low reflection in visible regime. Applied Physics Letters, 2011, 99, .	3.3	40
38	A Modified Block Copolymer Nano-Patterning Method for High Density Sub-30 nm Polystyrene Nanosphere and Cold Nanomech Formation, Nanoscience and Nanotechnology Latters, 2011, 3, 215-221	0.4	5

A Modified Block Copolymer Nano-Patterning Method for High Density Sub-30 nm Polystyrene Nanosphere and Gold Nanomesh Formation. Nanoscience and Nanotechnology Letters, 2011, 3, 215-221. 38