Gao-Wu Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2803068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial metals and alloys for potential biomedical implants. Bioactive Materials, 2021, 6, 2569-2612.	8.6	283
2	Facile "Green―Synthesis, Characterization, and Catalytic Function of β-D-Glucose-Stabilized Au Nanocrystals. Chemistry - A European Journal, 2006, 12, 2131-2138.	1.7	278
3	Recent developments in rare-earth free wrought magnesium alloys having high strength: A review. Journal of Alloys and Compounds, 2016, 663, 321-331.	2.8	261
4	Mechanistic investigation of a low-alloy Mg–Ca-based extrusion alloy with high strength–ductility synergy. Acta Materialia, 2020, 186, 278-290.	3.8	250
5	High-Magnetization FeCo Nanochains with Ultrathin Interfacial Gaps for Broadband Electromagnetic Wave Absorption at Gigahertz. ACS Applied Materials & Interfaces, 2016, 8, 3494-3498.	4.0	152
6	Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon, 2018, 126, 372-381.	5.4	122
7	Enhancing mechanical properties of Mg–Sn alloys by combining addition of Ca and Zn. Materials and Design, 2015, 83, 736-744.	3.3	118
8	Role of Cu element in biomedical metal alloy design. Rare Metals, 2019, 38, 476-494.	3.6	110
9	Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode. Talanta, 2011, 85, 1260-1264.	2.9	107
10	Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon, 2016, 96, 972-979.	5.4	107
11	Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Materials Science and Engineering C, 2017, 75, 906-917.	3.8	102
12	Gigahertz Dielectric Polarization of Substitutional Single Niobium Atoms in Defective Graphitic Layers. Physical Review Letters, 2015, 115, 147601.	2.9	101
13	Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties. Science Bulletin, 2020, 65, 623-630.	4.3	100
14	Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co–Cr system. Acta Materialia, 2002, 50, 2223-2232.	3.8	91
15	A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. Materials Science and Engineering C, 2017, 71, 520-528.	3.8	86
16	Enhanced photoelectrochemical activity for Cu and Ti doped hematite: The first principles calculations. Applied Physics Letters, 2011, 98, .	1.5	84
17	Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction. Nano Energy, 2016, 28, 261-268.	8.2	78
18	Cu2ZnSnS4 thin films: Facile and cost-effective preparation by RF-magnetron sputtering and texture control. Journal of Alloys and Compounds, 2013, 552, 418-422.	2.8	69

#	Article	IF	CITATIONS
19	Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti–Cu alloys. Biomedical Materials (Bristol), 2016, 11, 065001.	1.7	66
20	Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode. Journal of Materials Chemistry A, 2020, 8, 7245-7252.	5.2	66
21	A novel biomedical titanium alloy with high antibacterial property and low elastic modulus. Journal of Materials Science and Technology, 2021, 81, 13-25.	5.6	61
22	An <i>in situ</i> Bi-decorated BiOBr photocatalyst for synchronously treating multiple antibiotics in water. Nanoscale Advances, 2019, 1, 1124-1129.	2.2	60
23	What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?. Materials Science and Engineering C, 2020, 109, 110548.	3.8	59
24	Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn–Mg Binary Alloys. Acta Metallurgica Sinica (English Letters), 2017, 30, 931-940.	1.5	57
25	Phase equilibria of the long-period stacking ordered phase in the Mg–Ni–Y system. Intermetallics, 2015, 57, 127-132.	1.8	55
26	Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite. Journal of Alloys and Compounds, 2017, 724, 1023-1029.	2.8	55
27	Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment. Bioactive Materials, 2018, 3, 28-38.	8.6	55
28	Improved microwave absorption properties by atomic-scale substitutions. Carbon, 2018, 139, 181-188.	5.4	54
29	Theoretical Understanding of Enhanced Photoelectrochemical Catalytic Activity of Sn-Doped Hematite: Anisotropic Catalysis and Effects of Morin Transition and Sn Doping. Journal of Physical Chemistry C, 2013, 117, 3779-3784.	1.5	51
30	Tuning orientation of doped hematite photoanodes for enhanced photoelectrochemical water oxidation. Solar Energy Materials and Solar Cells, 2018, 179, 328-333.	3.0	51
31	Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy. Journal of Magnesium and Alloys, 2020, 9, 1297-1297.	5.5	49
32	Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application. Materials Science and Engineering C, 2020, 115, 110921.	3.8	48
33	Microstructure and tensile properties of as-extruded Mg-Sn-Y alloys. Transactions of Nonferrous Metals Society of China, 2010, 20, s493-s497.	1.7	47
34	Electrodeposition of Sn-doped hollow \hat{l}_{\pm} -Fe2O3 nanostructures for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2013, 574, 421-426.	2.8	47
35	Self-assembly of β-d glucose-stabilized Pt nanocrystals into nanowire-like structures. Chemical Communications, 2005, , 2972.	2.2	45
36	Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions. Applied Surface Science, 2014, 317, 724-729.	3.1	45

#	Article	IF	CITATIONS
37	Magnetoresistance Effect in Rubrene-Based Spin Valves at Room Temperature. ACS Applied Materials & Interfaces, 2015, 7, 4685-4692.	4.0	45
38	Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals. Journal of Materials Chemistry C, 2015, 3, 1309-1318.	2.7	45
39	Microstructures and tensile properties of as-extruded Mg-Sn binary alloys. Transactions of Nonferrous Metals Society of China, 2010, 20, 1321-1325.	1.7	43
40	One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms. Biosensors and Bioelectronics, 2013, 44, 191-197.	5.3	43
41	Assembled micro-nano particles with multiple interface polarizations for electromagnetic absorption at gigahertz. Applied Physics Letters, 2014, 104, .	1.5	43
42	Microstructure and tribocorrosion performance of nanocrystalline TiN graded coating on biomedical titanium alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 1026-1035.	1.7	42
43	Ultralight and high-elastic carbon foam with hollow framework for dynamically tunable electromagnetic interference shielding at gigahertz frequency. Carbon, 2019, 153, 330-336.	5.4	42
44	(Ti/Zr,N) codoped hematite for enhancing the photoelectrochemical activity of water splitting. Physical Chemistry Chemical Physics, 2015, 17, 22179-22186.	1.3	41
45	Co-existences of the two types of β′ precipitations in peak-aged Mg-Gd binary alloy. Journal of Alloys and Compounds, 2018, 738, 32-36.	2.8	41
46	Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol. Acta Materialia, 2007, 55, 3671-3680.	3.8	40
47	Achieving high strength in indirectly-extruded binary Mg–Ca alloy containing Guinier–Preston zones. Journal of Alloys and Compounds, 2015, 630, 272-276.	2.8	39
48	Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. Journal of Materials Chemistry C, 2017, 5, 5055-5062.	2.7	37
49	Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application. Materials Science and Engineering C, 2019, 94, 376-384.	3.8	37
50	The phase equilibria and thermal stability of the long-period stacking ordered phase in the Mg–Cu–Y system. Journal of Alloys and Compounds, 2014, 593, 141-147.	2.8	35
51	Break Snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanoparticles. Applied Physics Letters, 2015, 106, .	1.5	35
52	Oxygen vacancy induced superior visible-light-driven photodegradation pollutant performance in BiOCl microflowers. New Journal of Chemistry, 2018, 42, 3614-3618.	1.4	35
53	Improvement in antibacterial properties and cytocompatibility of titanium by fluorine and oxygen dual plasma-based surface modification. Applied Surface Science, 2019, 463, 261-274.	3.1	35
54	Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activity. Journal of Materials Chemistry A, 2019, 7, 10980-10987.	5.2	35

#	Article	IF	CITATIONS
55	DFT study on elastic and piezoelectric properties of tetragonal BaTiO3. Computational Materials Science, 2010, 49, S372-S377.	1.4	34
56	Synthesis of CuOx–CeO2 catalyst with high-density interfaces for selective oxidation of CO in H2-rich stream. International Journal of Hydrogen Energy, 2019, 44, 4156-4166.	3.8	34
57	<i>In situ</i> synthesis of Ni/NiO composites with defect-rich ultrathin nanosheets for highly efficient biomass-derivative selective hydrogenation. Journal of Materials Chemistry A, 2019, 7, 17834-17841.	5.2	33
58	Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation. Journal of Materials Science and Technology, 2020, 40, 39-46.	5.6	33
59	Development of high density magnetic recording media for hard disk drives: materials science issues and challenges. International Materials Reviews, 2009, 54, 157-179.	9.4	32
60	Hydrogen generation by water splitting on hematite (0001) surfaces: first-principles calculations. Physical Chemistry Chemical Physics, 2014, 16, 25442-25448.	1.3	32
61	Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity. Materials Research Bulletin, 2019, 112, 104-108.	2.7	32
62	Ultra-stable metal nano-catalyst synthesis strategy: a perspective. Rare Metals, 2020, 39, 113-130.	3.6	32
63	Two-dimensional ferromagnetic semiconductors of rare-earth monolayer GdX2 (XÂ= Cl, Br, I) with large perpendicular magnetic anisotropy and high Curie temperature. Materials Today Physics, 2021, 21, 100514.	2.9	32
64	A synergistic combination of diatomaceous earth with Au nanoparticles as a periodically ordered, button-like substrate for SERS analysis of the chemical composition of eccrine sweat in latent fingerprints. Journal of Materials Chemistry C, 2015, 3, 4933-4944.	2.7	30
65	Phase modification of copper phthalocyanine semiconductor by converting powder to thin film. Applied Surface Science, 2018, 428, 788-792.	3.1	30
66	Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Applied Surface Science, 2019, 466, 92-98.	3.1	30
67	Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale, 2021, 13, 2324-2332.	2.8	30
68	Fabrication of Large-Area, High-Enhancement SERS Substrates with Tunable Interparticle Spacing and Application in Identifying Microorganisms at the Single Cell Level. Journal of Physical Chemistry C, 2012, 116, 3320-3328.	1.5	29
69	Rapid room-temperature synthesis and visible-light photocatalytic properties of BiOI nanoflowers. Journal of Alloys and Compounds, 2015, 639, 445-451.	2.8	28
70	Control of Catalytic Activity of Nanoâ€Au through Tailoring the Fermi Level of Support. Small, 2019, 15, e1901789.	5.2	27
71	Prediction of effective elements for magnetically induced phase separation in Co–Cr-based magnetic recording media. Applied Physics Letters, 2001, 79, 644-646.	1.5	26
72	Grain refining mechanism of Al-containing Mg alloys with the addition of Mn–Al alloys. Journal of Alloys and Compounds, 2010, 507, 410-413.	2.8	26

#	Article	IF	CITATIONS
73	4d transition-metal doped hematite for enhancing photoelectrochemical activity: theoretical prediction and experimental confirmation. RSC Advances, 2015, 5, 19353-19361.	1.7	26
74	New Structured Laves Phase in the Mg-In-Ca System with Nontranslational Symmetry and Two Unit Cells. Physical Review Letters, 2018, 120, 085701.	2.9	25
75	Antibacterial effect of Ti Ag alloy motivated by Ag-containing phases. Materials Science and Engineering C, 2021, 128, 112266.	3.8	25
76	Co/Co3O4 nanoparticles embedded into thin O-doped graphitic layer as bifunctional oxygen electrocatalysts for Zn-air batteries. Chemical Engineering Journal, 2022, 427, 130931.	6.6	25
77	Dependence on the structure and surface polarity of ZnS photocatalytic activities of water splitting: first-principles calculations. Physical Chemistry Chemical Physics, 2013, 15, 9531.	1.3	23
78	Spin conserved electron transport behaviors in fullerenes (C60 and C70) spin valves. Carbon, 2016, 106, 202-207.	5.4	23
79	c-In2O3∫î±-Fe2O3 heterojunction photoanodes for water oxidation. Journal of Materials Science, 2016, 51, 8148-8155.	1.7	23
80	Kinetic study of a novel electroless Ni P deposition on AZ91D magnesium alloy using nickel hypophosphite as the metal salt. Journal of Alloys and Compounds, 2017, 694, 1133-1139.	2.8	23
81	Effects of single-pass large-strain rolling on microstructure and mechanical properties of Mg-Al-Ca alloy sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139332.	2.6	23
82	Development of a low elastic modulus and antibacterial Ti-13Nb-13Zr-5Cu titanium alloy by microstructure controlling. Materials Science and Engineering C, 2021, 126, 112116.	3.8	23
83	Discontinuous coarsening of the lamellar structure of γ-TiAl-based intermetallic alloys and its control. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1927-1938.	1.1	22
84	Magnetically induced phase separation and magnetic properties of Co–Mo hexagonal-close-packed structure thin films. Applied Physics Letters, 2003, 83, 966-968.	1.5	22
85	Capping Groups Induced Size and Shape Evolution of Magnetite Particles Under Hydrothermal Condition and their Magnetic Properties. Journal of the American Ceramic Society, 2009, 92, 631-635.	1.9	22
86	On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 664, 43-48.	2.6	22
87	Pt-doped α-Fe 2 O 3 photoanodes prepared by a magnetron sputtering method for photoelectrochemical water splitting. Materials Research Bulletin, 2017, 91, 214-219.	2.7	22
88	Self-Assembly of Two Unit Cells into a Nanodomain Structure Containing Five-Fold Symmetry. Journal of Physical Chemistry Letters, 2018, 9, 4373-4378.	2.1	22
89	Nanoscale nickel–iron nitride-derived efficient electrochemical oxygen evolution catalysts. Catalysis Science and Technology, 2020, 10, 4458-4466.	2.1	22
90	Activating profuse pyramidal slips in magnesium alloys via raising strain rate to dynamic level. Journal of Alloys and Compounds, 2016, 688, 149-152.	2.8	20

#	Article	IF	CITATIONS
91	Synchronous Growth of Porous MgO and Half-Embedded Nano-Ru on a Mg Plate: A Monolithic Catalyst for Fast Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 3616-3623.	3.2	20
92	Nonsymmetrical Segregation of Solutes in Periodic Misfit Dislocations Separated Tilt Grain Boundaries. Nano Letters, 2021, 21, 2870-2875.	4.5	20
93	Preparation and visible-light-driven photocatalytic property of AgX (X = Cl, Br, I) nanomaterials. Journal of Alloys and Compounds, 2019, 776, 948-953.	2.8	19
94	Microstructure and mechanical property of multi-pass low-strain rolled Mg-Al-Zn-Mn alloy sheet. Journal of Alloys and Compounds, 2020, 835, 155228.	2.8	19
95	Construction of a TiO2/Cu2O multifunctional coating on Ti-Cu alloy and its influence on the cell compatibility and antibacterial properties. Surface and Coatings Technology, 2021, 421, 127438.	2.2	19
96	Design and preparation of a biomedical titanium alloy with low elastic modulus and high antibacterial property based on Ti-Mo-Ag system. Journal of Alloys and Compounds, 2022, 908, 164639.	2.8	19
97	Discontinuous coarsening of primary α2/γ lamellae at colony boundaries in γ-TiAl-based alloys. Intermetallics, 1999, 7, 1-4.	1.8	18
98	Effect of solid solution treatment on in vitro degradation rate of as-extruded Mg-Zn-Ag alloys. Transactions of Nonferrous Metals Society of China, 2017, 27, 2607-2612.	1.7	18
99	Phase equilibria of Mg-rich corner in Mg–Zn–Al ternary system at 300 °C. Transactions of Nonferrous Metals Society of China, 2012, 22, 241-245.	1.7	17
100	Re-determination of γ/(γ+α-Mg) phase boundary and experimental evidence of R intermetallic compound existing at lower temperatures in the Mg–Al binary system. Journal of Alloys and Compounds, 2012, 540, 210-214.	2.8	17
101	Anomalous crystal structure of γâ€3 phase in the Mg-RE-Zn(Ag) series alloys: Causality clarified by ab initio study. Journal of Materials Science and Technology, 2020, 36, 167-175.	5.6	17
102	Role of Al addition in modifying microstructure and mechanical properties of Mg-1.0Âwt% Ca based alloys. Materials Characterization, 2020, 169, 110608.	1.9	17
103	Carbon-CeO2 interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions. Science China Materials, 2021, 64, 128-136.	3.5	17
104	Ledge mechanism of primary α2/γ lamellae growing in the supersaturated α2 matrix for γ-TiAl-based (γα2) alloy. Scripta Materialia, 1998, 39, 289-293.	2.6	16
105	Permeability of submicron and nanometer ferromagnetic particle composites. Journal of Applied Physics, 2007, 101, 09M505.	1.1	16
106	Chemical synthesis of faceted α-Fe2O3 single-crystalline nanoparticles and their photocatalytic activity. Journal of Materials Science, 2013, 48, 5744-5749.	1.7	16
107	Copper wires with seamless 1D nanostructures: Preparation and electrochemical sensing performance. Materials Letters, 2018, 211, 247-249.	1.3	16
108	Preparation and photocatalytic property of porous α-Fe2O3 nanoflowers. Materials Research Bulletin, 2018, 107, 94-99.	2.7	16

#	Article	IF	CITATIONS
109	Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility. Rare Metals, 2019, 38, 503-511.	3.6	16
110	Synthesis of doped MnOx/diatomite composites for catalyzing ozone decomposition. Ceramics International, 2019, 45, 6966-6971.	2.3	16
111	Re-recognition of the aging precipitation behavior in the Mg–Sm binary alloy. Journal of Alloys and Compounds, 2020, 814, 152320.	2.8	16
112	Determination of surface crystallography of faceted nanoparticles using transmission electron microscopy imaging and diffraction modes. Journal of Applied Crystallography, 2009, 42, 519-524.	1.9	15
113	Isothermal section of Mg–Zn–Zr ternary system at 345° C. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 411-415.	0.7	15
114	Thermal Oxidation Preparation of Doped Hematite Thin Films for Photoelectrochemical Water Splitting. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	15
115	Fabrication of tunable Au SERS nanostructures by a versatile technique and application in detecting sodium cyclamate. RSC Advances, 2014, 4, 22660-22668.	1.7	15
116	Insight into variant selection of seven-layer modulated martensite in Ni–Mn–Ga thin films grown on MgO(0 0 1) substrate. Acta Materialia, 2015, 93, 205-217.	3.8	15
117	Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X = Sn, Y, Sc, Ag) alloys. Computational Materials Science, 2015, 106, 180-187.	1.4	15
118	Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation. Rare Metals, 2022, 41, 594-609.	3.6	15
119	Enhanced antibacterial activity of Ti-Cu alloy by selective acid etching. Surface and Coatings Technology, 2021, 421, 127478.	2.2	15
120	Towards ultrastrong and ductile medium-entropy alloy through dual-phase ultrafine-grained architecture. Journal of Materials Science and Technology, 2022, 126, 228-236.	5.6	15
121	Wood-Derived Porous Carbon/Iron Oxide Nanoparticle Composites for Enhanced Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 8537-8545.	2.4	15
122	Partial phase relationships of Mg-Zn-Ce system at 350 ŰC. Transactions of Nonferrous Metals Society of China, 2009, 19, 681-685.	1.7	14
123	Structural and magnetic properties of L10-FePt/Fe exchange coupled nano-composite thin films with high energy product. Journal of Magnetism and Magnetic Materials, 2013, 345, 165-170.	1.0	14
124	Formation of profuse <c+a> dislocations in deformed calcium-containing magnesium alloys. Philosophical Magazine Letters, 2016, 96, 249-255.</c+a>	0.5	14
125	Band engineering of multicomponent semiconductors: a general theoretical model on the anion group. Energy and Environmental Science, 2018, 11, 692-701.	15.6	14
126	Magnetoresistance Effect and the Applications for Organic Spin Valves Using Molecular Spacers. Materials, 2018, 11, 721.	1.3	14

Gao-Wu Qin

#	ARTICLE	IF	CITATIONS
127	Morphology and Mechanical, Corrosive, and Antibacterial Behaviors of Indirectly Extruded Zn-0.05wt.%Mg-(0.5, 1Âwt.%)Ag Alloys. Journal of Materials Engineering and Performance, 2019, 28, 6864-6872.	1.2	14
128	Synergistic effects of dopant (Ti or Sn) and oxygen vacancy on the electronic properties of hematite: a DFT investigation. RSC Advances, 2020, 10, 23263-23269.	1.7	14
129	Direct observation of magnetically induced phase separation in Co-W sputtered thin films. Applied Physics Letters, 2004, 85, 2559-2561.	1.5	13
130	Thermodynamic assessment of Au–Pt system. Transactions of Nonferrous Metals Society of China, 2012, 22, 1432-1436.	1.7	13
131	ZnO/ZnFe2O4/Ag hollow nanofibers with multicomponent heterojunctions for highly efficient photocatalytic water pollutants removal. Ceramics International, 2019, 45, 23522-23527.	2.3	13
132	Defect states dependence of spin transport in iron phthalocyanine spin valves. Physical Review B, 2019, 99, .	1.1	13
133	Incoherent magnetization reversal in Co–Pt nanodots investigated by magnetic force microscopy. Acta Materialia, 2011, 59, 4818-4824.	3.8	12
134	Fabrication of CaFe ₂ O ₄ nanofibers via electrospinning method with enhanced visible light photocatalytic activity. Functional Materials Letters, 2017, 10, 1750058.	0.7	12
135	Microstructure, Mechanical Properties and Corrosion Behavior of Extruded Mg–Zn–Ag Alloys with Single-Phase Structure. Acta Metallurgica Sinica (English Letters), 2018, 31, 575-583.	1.5	12
136	Unexpected magnetic coupling oscillations for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:n films induced by quantum wells. Physical Review B, 2018, 97, .</mml:n </mml:msub></mml:mrow></mml:math 	יווא ז מ/mml	:m a2 < mml:m
137	Defective Fe ³⁺ self-doped spinel ZnFe ₂ O ₄ with oxygen vacancies for highly efficient photoelectrochemical water splitting. Dalton Transactions, 2019, 48, 11934-11940.	1.6	12
138	Enhanced resistive switching performance in yttrium-doped CH ₃ NH ₃ PbI ₃ perovskite devices. Physical Chemistry Chemical Physics, 2021, 23, 21757-21768.	1.3	12
139	A novel Ti-Au alloy with strong antibacterial properties and excellent biocompatibility for biomedical application. Materials Science and Engineering C, 2022, 133, 112653.	3.8	12
140	An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species. Journal of Materials Science and Technology, 2022, 119, 75-86.	5.6	12
141	BiOCl Hierarchical Nanoflowers with Superior Mixed-dye Photodegradation Activity. Chemistry Letters, 2015, 44, 1306-1308.	0.7	11
142	Effect of Cu/Zn on microstructure and mechanical properties of extruded Mg–Sn alloys. Materials Science and Technology, 2016, 32, 1240-1248.	0.8	11
143	Tuning microwave absorption properties by hybriding heterogeneous components for core@shell structural Fe@SiC flakes. Journal of Magnetism and Magnetic Materials, 2018, 462, 46-52.	1.0	11
144	Evidence of a novel intermetallic Mg ₇ Ag ₃ phase in Mg–Ag binary alloy system. Journal of Applied Crystallography, 2018, 51, 844-848.	1.9	11

#	Article	IF	CITATIONS
145	Enhanced Initial Permeability of Composite Assembly of Ferromagnetic Particles. Journal of the Magnetics Society of Japan, 2006, 30, 540-544.	0.4	11
146	Thermodynamic calculations of the effect of B and Ta on magnetically induced phase separation in Co–Cr–Pt alloys. Applied Physics Letters, 2002, 80, 2704-2706.	1.5	10
147	Effect of reaction time on formation of CoNi particles prepared via the polyol method. Metals and Materials International, 2007, 13, 207-210.	1.8	10
148	Study of Permeability for Composites Including Fe, NiZn Ferrite and Fe-B-P Particles. IEEE Transactions on Magnetics, 2011, 47, 3160-3162.	1.2	10
149	Activations of stacking faults in the calcium-containing magnesium alloys under compression. Journal of Alloys and Compounds, 2017, 692, 898-902.	2.8	10
150	High and reversible spin polarization in a collinear antiferromagnet. Applied Physics Reviews, 2020, 7, .	5.5	10
151	Improved corrosion resistance of dental Ti50Zr alloy with (TiZr)N coating in fluoridated acidic artificial saliva. Rare Metals, 2021, 40, 2927-2936.	3.6	10
152	Electronic and optical properties of MoS ₂ /α-Fe ₂ O ₃ (0001) heterostructures: a first-principles investigation. CrystEngComm, 2017, 19, 6333-6338.	1.3	10
153	Self-adapted clustering of solute atoms into a confined two-dimensional prismatic platelet with an ellipse-like quasi-unit cell. IUCrJ, 2018, 5, 823-829.	1.0	10
154	Microstructures and bio-corrosion resistances of as-extruded Mg–Ca alloys with ultra-fine grain size. Rare Metals, 2023, 42, 680-687.	3.6	9
155	Confining Gold Nanoclusters in Highly Defective Graphitic Layers To Enhance the Methanol Electrooxidation Reaction. ChemCatChem, 2018, 10, 141-147.	1.8	9
156	Phase equilibria of low-Y side in Mg–Zn–Y system at 400°C. Rare Metals, 2020, 39, 262-269.	3.6	9
157	Mechanical performance and biocompatibility assessment of <scp>Zn</scp> â€0.05wt% <scp>Mg</scp> â€(0.5, 1 wt%) <scp>Ag</scp> alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2925-2936.	1.6	9
158	Enhanced age-hardening response of the Mg-Sm alloy via alloying with Cd. Materials Characterization, 2020, 170, 110669.	1.9	9
159	Anisotropic Growth of Iron Oxyhydroxide Nanorods and their Photocatalytic Activity. Advanced Engineering Materials, 2010, 12, 1082-1085.	1.6	8
160	Novel stable hard transparent conductors in TiO2-TiC system: Design materials from scratch. Scientific Reports, 2015, 4, 7503.	1.6	8
161	Strain analysis of misfit dislocations in α-Fe2O3/α-Al2O3 heterostructure interface by geometric phase analysis. Micron, 2015, 69, 21-24.	1.1	8
162	Tribocorrosion Behavior of Ti–Cu Alloy in Hank's Solution for Biomedical Application. Journal of Bio- and Tribo-Corrosion, 2018, 4, 1.	1.2	8

#	Article	IF	CITATIONS
163	Magnetic Modification and the Mechanism of Tbâ€Phthalocyanine Single Molecule Magnets Prepared by a High Yield Method. European Journal of Inorganic Chemistry, 2020, 2020, 2112-2117.	1.0	8
164	Diffusional-displacive transformation mechanism for the β1 precipitate in a model Mg-rare-earth alloy. Materials Characterization, 2021, 174, 111018.	1.9	8
165	First principles calculation on thermal stability of metastable precipitates in Mg–Gd binary alloys. Materials Science and Technology, 2012, 28, 794-798.	0.8	7
166	Size controlled preparation of Fe–B–P submicrometre particles and magnetic performance. Materials Research Innovations, 2014, 18, S4-634-S4-638.	1.0	7
167	Uniform Bi ₂ O ₂ CO ₃ hierarchical nanoflowers: solvothermal synthesis and photocatalytic properties. Functional Materials Letters, 2015, 08, 1550021.	0.7	7
168	Atomic-scale HAADF-STEM characterization of an age-hardenable Mg-Cd-Yb alloy. Journal of Alloys and Compounds, 2019, 770, 742-747.	2.8	7
169	Insights into unidirectional migration of photo-excited electrons at ZnFe2O4/graphene van der Waals interface. Computational Materials Science, 2019, 157, 60-66.	1.4	7
170	Interface hybridization and spin filter effect in metal-free phthalocyanine spin valves. Physical Chemistry Chemical Physics, 2020, 22, 11663-11670.	1.3	7
171	Enhanced high-frequency microwave absorption in core-shell nanocapsules with atomic-scale oxygen substitutions. Journal of Applied Physics, 2020, 127, .	1.1	7
172	Strength-ductility balance of Mg-1.03Ca-0.47Mn Mg alloy sheet produced by rolling and annealing. Materials Letters, 2021, 287, 129288.	1.3	7
173	Interfacial antiferromagnetic coupling and high spin polarization in metallic phthalocyanines. Physical Review B, 2021, 103, .	1.1	7
174	Effect of Annealing on Magnetic Properties of Ni ₈₀ Fe ₂₀ Permalloy Nanoparticles Prepared by Polyol Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 10796-10799.	0.9	6
175	Influence of annealing treatment on microstructure and soft magnetic properties of Fe-B-P nanoparticles prepared by aqueous chemical reduction. Hyperfine Interactions, 2013, 219, 101-105.	0.2	6
176	Photoelectrochemical Behavior of Snâ€Đoped <i>α</i> â€Fe ₂ O ₃ Photoanode with Different Reducer. Chinese Journal of Chemistry, 2016, 34, 778-782.	2.6	6
177	Room temperature quasi-superplasticity behavior of backward extruded Zn–15Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 336-341.	2.6	6
178	Preparation of Uniform BiOI Nanoflowers with Visible Light-Induced Photocatalytic Activity. Australian Journal of Chemistry, 2016, 69, 212.	0.5	6
179	Magnetic relaxation dependences on the central ions for Ln (Ln = Tb, Dy, Er) phthalocyanines. Applied Physics Letters, 2020, 117, .	1.5	6
180	Sulfur-doped wood-derived porous carbon for optimizing electromagnetic response performance. Nanoscale, 2021, 13, 16084-16093.	2.8	6

#	Article	IF	CITATIONS
181	Discontinuous coarsening of primary α2γ lamellae in surface layer of the Ti58Al42 intermetallic alloy. Scripta Materialia, 1997, 37, 937-942.	2.6	5
182	Magnetic Anisotropy and Phase Separation of Co-Mo and Co-W Films. Journal of the Magnetics Society of Japan, 2004, 28, 245-248.	0.4	5
183	Effect of Phosphor Addition on Intergranular Exchange Coupling of Co-Pt Thin Films. Journal of Materials Science and Technology, 2011, 27, 398-402.	5.6	5
184	Isothermal section of Mg-rich corner in Mg–Zn–Al ternary system at 335 °C. Transactions of Nonferrous Metals Society of China, 2014, 24, 3405-3412.	1.7	5
185	Interphase Boundary Segregation into an Ordered Core–Shell Structure with a Shell Containing Two Unit Cells. Crystal Growth and Design, 2020, 20, 6629-6635.	1.4	5
186	Magnetic Improvement and Relaxation Mechanism of the Tb-Phthalocyanine Single-Molecule Magnet by Absorbing CH ₂ Cl ₂ Molecules. Journal of Physical Chemistry C, 2021, 125, 10165-10172.	1.5	5
187	Synthesizing CNx heterostructures on ferromagnetic nanoparticles for improving microwave absorption property. Applied Surface Science, 2021, 564, 150480.	3.1	5
188	Variable precipitation behaviors of Laves phases in an ultralight Mg-Li-Zn alloy. Journal of Magnesium and Alloys, 2023, 11, 2018-2026.	5.5	5
189	To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure. Surface and Coatings Technology, 2022, 433, 128116.	2.2	5
190	Crystallographic orientation of modulated martensite in epitaxially grown Ni–Mn–Ga thin film. Thin Solid Films, 2015, 584, 90-93.	0.8	4
191	Facile fabrication of α-Fe2O3/Ag2S heterojunction with enhanced photoelectrochemical water splitting property. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
192	Unusual interfacial magnetic interactions for Ï"-MnAl with Fe(Co) atomic layers. Physical Chemistry Chemical Physics, 2019, 21, 2443-2452.	1.3	4
193	The magnetic anisotropy of Tb-phthalocyanine films effected by molecular orientation. Applied Surface Science, 2022, 585, 152445.	3.1	4
194	Au composition dependent order-disorder transitions of Feâ^'Pt intermetallic compounds: Experiments and thermodynamic analysis. Acta Materialia, 2022, 235, 118058.	3.8	4
195	Amorphous forming ability of Co-X (X=Cr, Mo, W) magnetic thin films. Acta Metallurgica Sinica (English Letters), 2009, 22, 415-420.	1.5	3
196	Orientation relationship between α-Fe precipitate and α-Al2O3 matrix in iron-implanted sapphire. Micron, 2014, 62, 7-10.	1.1	3
197	Crystallographic information of intermediate phases in binary Mg– X (X =Sn, Y, Sc, Ag) alloys. Data in Brief, 2015, 4, 190-192.	0.5	3
198	Synthesis of small Fe2O3 nanocubes and their enhanced water vapour adsorption–desorption properties. RSC Advances, 2015, 5, 84587-84591.	1.7	3

#	Article	IF	CITATIONS
199	Inter-granular exchange coupling and magnetic anisotropy of Ta/Ru/Co-23 at%Pt perpendicular thin films with different Ru underlayer thicknesses. Rare Metals, 2016, 35, 463-470.	3.6	3
200	Experimental evidence of the Mg7(Zn, Ag)3 continuous solid solution in Mg-rich corner of Mg–Zn–Ag ternary system at 335â€Â°C. Journal of Alloys and Compounds, 2019, 789, 991-995.	2.8	3
201	Phase equilibria of low-Ni side in Nb–Ni–Ti system at 1100°C. Rare Metals, 2020, 39, 936-941.	3.6	3
202	Interdiffusion and impurity diffusion behavior in polycrystalline Mg-Y binary system. Journal of Alloys and Compounds, 2021, 867, 159070.	2.8	3
203	Structures and macrosegregation of a 2024 aluminum alloy fabricated by direct chill casting with double cooling field. China Foundry, 2022, 19, 1-8.	0.5	3
204	Ternary compounds and solid-state phase equilibria in Mg-rich side of Mg-Zn-Ca system at 300 °C. Transactions of Nonferrous Metals Society of China, 2011, 21, 2147-2153.	1.7	2
205	One pot preparation of plasmonic photocatalyst at low temperature. Rare Metals, 2011, 30, 157-160.	3.6	2
206	Growth of textured iron oxyhydroxide nanorod arrays on glass substrate. Materials Letters, 2012, 89, 143-145.	1.3	2
207	Microstructure of spinel islands on the sapphire surface grown by ion implantation and annealing. Micron, 2014, 64, 6-9.	1.1	2
208	Template synthesis and photoelectrochemical properties of Bi 2 S 3 microflowers. Materials Research Bulletin, 2015, 68, 115-119.	2.7	2
209	Phosphor doping enhanced c-axis alignment and exchange decoupling of sputtered Co-Pt perpendicular thin films. Journal of Applied Physics, 2016, 119, 145304.	1.1	2
210	Effect of extrusion temperature on mechanical properties of as-extruded Zn–22Al alloys. Materials Science and Technology, 2020, 36, 805-810.	0.8	2
211	Laser shock peening Fe-based coatings for enhancing wear and corrosion resistance. Materials Science and Technology, 2021, 37, 1214-1224.	0.8	2
212	Discrete resistive switching characteristics in metal-free phthalocyanine and Dy-phthalocyanine based devices. Materials Today Communications, 2022, 30, 103131.	0.9	2
213	EBSD characterization of crystallographic orientations and twin interfaces of modulated martensite in epitaxial NiMnGa thin film. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012063.	0.3	1
214	Magnetic coupling in L10-MnGa/Ni films. Materials Research Express, 2019, 6, 116414.	0.8	1
215	Synergistic effects of carbon-encapsulated cobalt/tricobalt tetroxide nanocapsules on hydrogenation of 4-nitrophenol. Functional Materials Letters, 2019, 12, 1950059.	0.7	1
216	Microstructure and mechanical properties of continuous casting and extrusion Zn–15Âwt% Al alloys. Materials Letters, 2020, 261, 127090.	1.3	1

#	Article	IF	CITATIONS
217	Interfacial magnetic coupling and orbital hybridization for D022-Mn3Ga/Fe films. Physica Scripta, 2021, 96, 075804.	1.2	1
218	Magnetic modification of Dy-phthalocyanine single-molecule magnet by Co-crystallizing diamagnetic Y-phthalocyanine. Journal of Magnetism and Magnetic Materials, 2021, 537, 168162.	1.0	1
219	PHASE EQUILIBRIUM IN THE LOW-Ca SIDE OF Mg-Zn-Ca SYSTEM AT 400℃. Jinshu Xuebao/Acta Metallurgica Sinica, 2012, 48, 70.	0.3	1
220	The Influence of Copper Content on the Elastic Modulus and Antibacterial Properties of Ti-13Nb-13Zr-xCu Alloy. Metals, 2022, 12, 1132.	1.0	1
221	Interfacial magnetic coupling and the confinement effect of spin electrons for Ï,,-MnAl/Ni multilayers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126096.	0.9	0
222	Breaking the symmetry of spin-sublattices in antiferromagnet by interfacial tailoring in the L10-MnPt/NaCl/Fe junction. Applied Physics Letters, 2021, 119, 172401.	1.5	0
223	Influence of annealing treatment on microstructure and soft magnetic properties of Fe-B-P nanoparticles prepared by aqueous chemical reduction. , 2013, , 419-423.		0